附加题:已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A

附加题:已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向... 附加题:已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向转动,变化摆放如图位置(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是______;如图2,若要OB恰好平分∠COD,则∠AOC的度数是______.(2)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.(3)当三角板OCD从图1的位置开始,绕点O逆时针方向旋转一周,保持射线OM平分∠AOC、射线ON平分∠BOD(∠AOC≤180°,∠BOD≤180°),在旋转过程中,(2)中的结论是否保持不变?如果保持不变,请说明理由;如果变化,请说明变化的情况和结果(即旋转角度a在什么范围内时∠MON的度数是多少). 展开
 我来答
nqKF60RJ
推荐于2016-11-11 · TA获得超过339个赞
知道答主
回答量:121
采纳率:0%
帮助的人:149万
展开全部
(1)∠BOD=90°-∠COD=90°-30°=60°,
∠AOC=90°-
1
2
∠COD=90°-
1
2
×30°=75°.

(2)不变,60°.
根据图中所示∠MON=
1
2
(∠AOB-∠COD)+∠COD=
1
2
(90°-30°)+30°=60度.

(3)①当0°<α<180°时,
∠MON=
1
2
(90°+∠BOC)+
1
2
(30°+∠BOC)-∠BOC=60°
②α=180°时,即∠AOC为平角,
(1)点M在OB上,
∴∠MOD=∠BOC+∠COD=90°+30°=120°,
又∵ON平分∠BOD,
∴∠MON=120×
1
2
=60度.
(2)点M在BO上,
∠MON=180°-60°=120度.
故∠MON=60°或120°
③180°<α<240°时,
2(30°+∠MOD)+90°+∠CON+(∠CON+30°)=360°,
解得:∠MOD+∠CON=90°,则
∠MON=90°+30°=120°
③当α=240°时,∠BOD=180°,那么此时N可以平分在∠BOD的左边,使得∠MON=60°,N平分在∠BOD的右边,那么∠MON=120°
⑤240°<α<360°时,
∠MON=
1
2
(30°-∠AOD)+
1
2
(90°-∠AOD)+∠AOD=60度.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式