若半群A满足存在左单位元,存在右逆元,则A是群。正确给出证明,错误 若半群A满足存在左单位元,存在右逆元,则A是群。正确给出证明,错误举出例。... 若半群A满足存在左单位元,存在右逆元,则A是群。正确给出证明,错误举出例。 展开 我来答 可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。 证明 搜索资料 1个回答 #热议# 应届生在签三方时要注意什么? TBB000623 2020-01-26 · TA获得超过374个赞 知道小有建树答主 回答量:274 采纳率:91% 帮助的人:65.8万 我也去答题访问个人页 关注 展开全部 答案是否定的。一种相当简单的反例构造方法是定义半群<X,*>,其中乘法*定义为对于X中的任意两个数a,b, 定义a*b=b,然后任取X中的任意一个元e为单位元。乘法在X的封闭性和结合律是显然的。所以<X,*>是半群。在这种定义下,对于任意的a属于X,e*a=a,则此时e是左单位元。同时对于任意的a属于X,由a*e=e可知任意a均存在右逆元e。然而这种半群既不存在右单位元,也不存在左逆元,所以X不是群 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 广告您可能关注的内容2024精选五年级数学第一单元知识点上册_【完整版】.doc2024新整理的五年级数学第一单元知识点上册,知识点大全汇总很全面,务必收藏,烂熟于心1分不扣,立即下载五年级数学第一单元知识点上册使用吧!www.163doc.com广告 其他类似问题 2021-10-22 有限半群G若满足左、右消去律,则G是群。这个命题对于无限半群成立吗?说明理由 1 2011-06-16 试证明如果群中每一个元素的逆元是它本身,则该群必为可换群。 6 2023-04-19 证明:在群(G,*)中,若每个元素的逆元都是它自己,则此群一定是交换群. 2022-05-19 证明:如果一个群只有一个群元是二阶的,则这个群元与其他群元可以对易, 2022-07-05 证明:设是一个群,则对于任意a,b∈G,必存在惟一的x∈G使得a•x=b. 2022-11-13 证明:设是一个群,则对于任意a,b∈G,必存在惟一的x∈G使得a•x=b.? 2023-04-20 设(A,*)是一个半群,而且对于A中的元素a和b,如果a≠b必有a*b≠b*a,证明: 2023-04-20 设(A,*)是一个半群,而且对于A中的元素a和b,如果a≠b必有a*b≠b*a,试证明: 更多类似问题 > 为你推荐: