正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列

 我来答
邵合英表戌
2020-04-29 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:941万
展开全部
既然这样,我就直说第三问了:
我求出的an=(n+1)*n/2,因此1/an=2/(n*(n+1))
又可以写成:1/an=2*(1/n-1/(n+1))。
因此,Sn=2*(1/(1*2)+1/(2*3)+……+1/(n*(n+1)))=2*(1/1-1/2+1/2-1/3+……+1/n-1/(n+1))
=2*(1-1/(n+1))
=2n/(n+1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式