siny=1/3,sin(x+y)=1,求sin(2x+y)
1个回答
展开全部
sin(x+y)=1 所以可得:cos(x+y)=0
sin(2x+2y)=2sin(x+y)cos(x+y)=0
cos(2x+2y)=cos^2(x+y)-sin^2(x+y)=-1
siny=1/3 所以可得:cosy=±√[1-sin^2y]=±2√2/3
当:cosy=2√2/3 时有:
sin(2x+y)
=sin(2x+2y-y)
=sin(2x+2y)cosy-cos(2x+2y)siny
=-2√2/3
当cosy=-2√2/3 时有:
sin(2x+y)
=sin(2x+2y-y)
=sin(2x+2y)cosy-cos(2x+2y)siny
=2√2/3
sin(2x+2y)=2sin(x+y)cos(x+y)=0
cos(2x+2y)=cos^2(x+y)-sin^2(x+y)=-1
siny=1/3 所以可得:cosy=±√[1-sin^2y]=±2√2/3
当:cosy=2√2/3 时有:
sin(2x+y)
=sin(2x+2y-y)
=sin(2x+2y)cosy-cos(2x+2y)siny
=-2√2/3
当cosy=-2√2/3 时有:
sin(2x+y)
=sin(2x+2y-y)
=sin(2x+2y)cosy-cos(2x+2y)siny
=2√2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询