如何证明三线共点?

 我来答
匿名用户
2023-03-10
展开全部
设ΔABC,三条高线为AD、BE、CF,AD与BE交于H,连接CF。向量HA=向量a,向量HB=向量b,向量HC=向量c。
因为AD⊥BC,BE⊥AC,
所以向量HA·向量BC=0,向量HB·向量CA=0,
即向量a·(向量c-向量b)=0,
向量b·(向量a-向量c)=0,
亦即
向量a·向量c-向量a·向量b=0
向量b·向量a-向量b·向量c=0
两式相加得
向量c·(向量a-向量b)=0
即向量HC·向量BA=0
故CH⊥AB,C、F、H共线,AD、BE、CF交于同一点H。证毕。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式