向量a=(4cosa,sina),向量b=(sinβ,4cosβ),向量c=(cosβ,-sinβ)
若向量a与向量b-2c垂直,求tan(a+β)若tanatanβ=16,求证向量a平行于向量b...
若向量a与向量b-2c垂直,求tan(a+β) 若tanatanβ=16,求证向量a平行于向量b
展开
2个回答
展开全部
(1)由题意得
a(b-2c)=0
ab-2ac=0
4cosasinβ+sina*4cosβ-2(4cosacosβ-sinasinβ)=0
4sin(a+β)-2(4cosacosβ-sinasinβ)=0
(2)证明:
16-tanatanβ=0
乘cosacosβ得
4cosa*4cosβ-sinasinβ=0
则a平行于b
(2)也可以反证:
证明:假设a平行与b
则4cosa*4cosβ-sinasinβ=0
两边同除以cosacosβ得
16-tanatanβ=0
与题意相符,所以假设成立,a平行于b
a(b-2c)=0
ab-2ac=0
4cosasinβ+sina*4cosβ-2(4cosacosβ-sinasinβ)=0
4sin(a+β)-2(4cosacosβ-sinasinβ)=0
(2)证明:
16-tanatanβ=0
乘cosacosβ得
4cosa*4cosβ-sinasinβ=0
则a平行于b
(2)也可以反证:
证明:假设a平行与b
则4cosa*4cosβ-sinasinβ=0
两边同除以cosacosβ得
16-tanatanβ=0
与题意相符,所以假设成立,a平行于b
展开全部
(1)由题意得
a(b-2c)=0
ab-2ac=0
4cosasinβ+sina*4cosβ-2(4cosacosβ-sinasinβ)=0
4sin(a+β)-2(4cosacosβ-sinasinβ)=0
不知道题目是否抄错,如果向量c=(cosβ,-4sinβ),会顺很多。
(2)证明:假设啊平行与b
则4cosa*4cosβ-sinasinβ=0
两边同除以cosacosβ得
16-tanatanβ=0
与题意相符,所以假设成立,a平行于b
a(b-2c)=0
ab-2ac=0
4cosasinβ+sina*4cosβ-2(4cosacosβ-sinasinβ)=0
4sin(a+β)-2(4cosacosβ-sinasinβ)=0
不知道题目是否抄错,如果向量c=(cosβ,-4sinβ),会顺很多。
(2)证明:假设啊平行与b
则4cosa*4cosβ-sinasinβ=0
两边同除以cosacosβ得
16-tanatanβ=0
与题意相符,所以假设成立,a平行于b
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询