如图,在Rt△ABC中,CD是斜边AB上的中线,DF⊥AB,交AC于E,交BC的延长线于点F. (1)求证:∠A=∠F;

如图,在Rt△ABC中,CD是斜边AB上的中线,DF⊥AB,交AC于E,交BC的延长线于点F.(1)求证:∠A=∠F;(2)△CDE与△FDC是否相似?并给予证明.... 如图,在Rt△ABC中,CD是斜边AB上的中线,DF⊥AB,交AC于E,交BC的延长线于点F. (1)求证:∠A=∠F; (2)△CDE与△FDC是否相似?并给予证明. 展开
 我来答
手机用户41917
推荐于2016-06-28 · TA获得超过290个赞
知道答主
回答量:116
采纳率:0%
帮助的人:129万
展开全部
解:(1)证明:∵∠ACB=90°,
∴∠A+∠B=90°,
∵DF⊥AB,
∴∠BDF=90°,
即∠B+∠F=90°,
∴∠A=∠F;
(2)解:△CDE∽△FDC.
理由是:∵CD是斜边AB上的中线,
∴AD=CD,
∴∠A=∠DCE,
∵∠DEC=∠A+∠ADE,∠DCF=∠DCE+∠ECF,
∴∠CED=∠FCD,
∴△CDE∽△FDC.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式