如图,OA是⊙O的半径,以OA为直径的⊙C与⊙O的弦AB相交于点D,求证:D是AB的中点

如图,OA是⊙O的半径,以OA为直径的⊙C与⊙O的弦AB相交于点D,求证:D是AB的中点.... 如图,OA是⊙O的半径,以OA为直径的⊙C与⊙O的弦AB相交于点D,求证:D是AB的中点. 展开
 我来答
袁绿蕊
推荐于2016-12-02 · 超过59用户采纳过TA的回答
知道答主
回答量:151
采纳率:62%
帮助的人:48万
展开全部
解答:证明:连结OD、BE,
∵OA、OE分别是⊙C与⊙O的直径,
∴∠ADO=∠ABE=90°,
∴OD∥BE,
∵O是AE的中点,
∴D是AB的中点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式