在正三角形△ABC中,E,F,P分别是AB,AC,BC边上的点,满足:AE:EB=CF:FA=CP:PB=1:2(如图1),将△

在正三角形△ABC中,E,F,P分别是AB,AC,BC边上的点,满足:AE:EB=CF:FA=CP:PB=1:2(如图1),将△AEF沿EF折成到△A1EF的位置,使二面... 在正三角形△ABC中,E,F,P分别是AB,AC,BC边上的点,满足:AE:EB=CF:FA=CP:PB=1:2(如图1),将△AEF沿EF折成到△A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B,A1P(如图2)(1)求证:A1E⊥平面BEP;(2)求二面角B-A1P-F的余弦值;(3)求点F到平面A1BP的距离. 展开
 我来答
行杉Qb
推荐于2016-08-17 · TA获得超过424个赞
知道答主
回答量:120
采纳率:0%
帮助的人:153万
展开全部
(1)不妨设正三角形ABC的边长为3
在图1中,取BE中点D,连接DF.AE:EB=CF:FA=1:2
∴AF=AD=2而∠A=60°,
∴△ADF是正三角形,又AE=DE=1,
∴EF⊥AD.
在图2中,A1E⊥EF,BE⊥EF,
∴∠A1EB为二面角A1-EF-B的平面角.由
题设条件知此二面角为直二面角,A1E⊥BE,又BE∩EF=E(2)
∴A1E⊥平面BEF,即A1E⊥平面BEP.
(2)在图3中,过F作FM⊥A1P与M,连接QM,QF,
∵CP=CF=1,∠C=60°,
∴△FCP是正三角形,
∴PF=1.有PQ=
1
2
BP=1
∴PF=PQ①,
∵A1E⊥平面BEP,EQ=EF=
3

∴A1F=A1Q,
∴△A1FP≌△A1QP从而∠A1PF=∠A1PQ②,
由①②及MP为公共边知△FMP≌△QMP,
∴∠QMP=∠FMP=90°,且MF=MQ,
从而∠FMQ为二面角B-A1P-F的平面角.
在Rt△A1QP中,A1Q=A1F=2,PQ=1,又∴A1P=
5

∵MQ⊥A1P,∴MQ=
A1Q?PQ
A1P
=
2
5
5

∴MF=
2
5
5

在△FCQ中,FC=1,QC=2,∠C=60°,由余弦定理得QF=
3

在△FMQ中,cos∠FMQ=
MF2+MQ2?QF2
2MF?MQ
=-
7<
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消