如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,

如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E... 如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EFP是等腰直角三角形;④EF=AP;⑤S四边形AEPF=12S△ABC.其中正确结论的个数是(  )A.2个B.3个C.4个D.5个 展开
 我来答
水低匮1
2014-12-26 · TA获得超过129个赞
知道答主
回答量:151
采纳率:100%
帮助的人:55.5万
展开全部
解:∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,故②正确;
在△APE和△CPF中,
∠APE=∠CPF
AP=PC
∠EAP=∠C=45°

∴△APE≌△CPF(ASA),
∴AE=CF,故①正确;
∴△EFP是等腰直角三角形,故③正确;
根据等腰直角三角形的性质,EF=
2
PE,
所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=
2
PE=AP,在其它位置时EF≠AP,故④错误;
∵△APE≌△CPF,
∴S△APE=S△CPF
∴S四边形AEPF=S△APF+S△APE=S△APF+S△CPF=S△APC=
1
2
S△ABC,故⑤正确,
综上所述,正确的结论有①②③⑤共4个.
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式