已知函数f(x)=ax2-2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中
已知函数f(x)=ax2-2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不...
已知函数f(x)=ax2-2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.
展开
1个回答
展开全部
(1)a取集合{0,1,2,3}中任一元素,
b取集合{0,1,2,3}中任一元素
∴a、b的取值情况的基本事件总数为16.
设“方程f(x)=0有两个不相等的实根”为事件A,
当a≥0,b≥0时方程f(x)=0有两个不相等实根的充要条件为b>a,且a≠0.
当b>a时,a的取值有(1,2)(1,3)(2,3)
即A包含的基本事件数为3.
∴方程f(x)=0有两个不相等的实根的概率P(A)=
;
(2)∵b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数
则试验的全部结果构成区域Ω={(a,b)|0≤b≤2,0≤a≤3}这是一个矩形区域,其面积SΩ=2×3=6
设“方程f(x)=0没有实根”为事件B,
则事件B构成的区域为M={(a,b)|0≤b≤2,0≤a≤3,a>b},
其面积SM=6-
×2×2=4,
由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)=
=
=
.
b取集合{0,1,2,3}中任一元素
∴a、b的取值情况的基本事件总数为16.
设“方程f(x)=0有两个不相等的实根”为事件A,
当a≥0,b≥0时方程f(x)=0有两个不相等实根的充要条件为b>a,且a≠0.
当b>a时,a的取值有(1,2)(1,3)(2,3)
即A包含的基本事件数为3.
∴方程f(x)=0有两个不相等的实根的概率P(A)=
3 |
16 |
(2)∵b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数
则试验的全部结果构成区域Ω={(a,b)|0≤b≤2,0≤a≤3}这是一个矩形区域,其面积SΩ=2×3=6
设“方程f(x)=0没有实根”为事件B,
则事件B构成的区域为M={(a,b)|0≤b≤2,0≤a≤3,a>b},
其面积SM=6-
1 |
2 |
由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)=
| ||
SΩ |
4 |
6 |
2 |
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询