已知函数f(x)=ax2-2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中

已知函数f(x)=ax2-2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不... 已知函数f(x)=ax2-2bx+a(a,b∈R)(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率. 展开
 我来答
夏晨兮0010
2014-11-28 · 超过64用户采纳过TA的回答
知道答主
回答量:117
采纳率:0%
帮助的人:159万
展开全部
(1)a取集合{0,1,2,3}中任一元素,
b取集合{0,1,2,3}中任一元素
∴a、b的取值情况的基本事件总数为16.
设“方程f(x)=0有两个不相等的实根”为事件A,
当a≥0,b≥0时方程f(x)=0有两个不相等实根的充要条件为b>a,且a≠0.
当b>a时,a的取值有(1,2)(1,3)(2,3)
即A包含的基本事件数为3.
∴方程f(x)=0有两个不相等的实根的概率P(A)=
3
16

(2)∵b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数
则试验的全部结果构成区域Ω={(a,b)|0≤b≤2,0≤a≤3}这是一个矩形区域,其面积SΩ=2×3=6
设“方程f(x)=0没有实根”为事件B,
则事件B构成的区域为M={(a,b)|0≤b≤2,0≤a≤3,a>b},
其面积SM=6-
1
2
×2×2=4,
由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)=
S
 
M
SΩ
=
4
6
=
2
3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式