(2014?犍为县一模)如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交
(2014?犍为县一模)如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且∠CBD=∠A;(1)判断直线BD...
(2014?犍为县一模)如图在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB,分别交于点D、E,且∠CBD=∠A;(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=6:5,BC=2,求BD的长.
展开
展开全部
(1)直线BD与⊙O相切.(1分)
证明:如图,连接OD.
∵OA=OD
∴∠A=∠ADO
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A
∴∠ADO+∠CDB=90°
∴∠ODB=90°
∴直线BD与⊙O相切.(2分)
(2)解法一:如图,连接DE.
∵AE是⊙O的直径,∴∠ADE=90°
∵AD:AO=6:5
∴cosA=AD:AE=3:5(3分)
∵∠C=90°,∠CBD=∠A
cos∠CBD=BC:BD=3:5(4分)
∵BC=2,BD=
;
解法二:如图,过点O作OH⊥AD于点H.
∴AH=DH=
AD
∵AD:AO=6:5
∴cosA=AH:AO=3:5(3分)
∵∠C=90°,∠CBD=∠A
∴cos∠CBD=BC:BD=3:5,
∵BC=2,
∴BD=
.
证明:如图,连接OD.
∵OA=OD
∴∠A=∠ADO
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A
∴∠ADO+∠CDB=90°
∴∠ODB=90°
∴直线BD与⊙O相切.(2分)
(2)解法一:如图,连接DE.
∵AE是⊙O的直径,∴∠ADE=90°
∵AD:AO=6:5
∴cosA=AD:AE=3:5(3分)
∵∠C=90°,∠CBD=∠A
cos∠CBD=BC:BD=3:5(4分)
∵BC=2,BD=
10 |
3 |
解法二:如图,过点O作OH⊥AD于点H.
∴AH=DH=
1 |
2 |
∵AD:AO=6:5
∴cosA=AH:AO=3:5(3分)
∵∠C=90°,∠CBD=∠A
∴cos∠CBD=BC:BD=3:5,
∵BC=2,
∴BD=
10 |
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询