1个回答
展开全部
解判断函数fx在区间(0+∞)上单调递减
设x1,x2属于(0,正无穷大)且x1<x2
则f(x1)-f(x2)
=1/(x1^2+1)-1/(x2^2+1)
=(x2^2-x1^2)/(x1^2+1)(x2^2+1)
由0<x1<x2
知x2^2>x1^2
则x2^2-x1^2>0
故(x2^2-x1^2)/(x1^2+1)(x2^2+1)>0
故f(x1)-f(x2)>0
故函数fx在区间(0+∞)上单调递减。
设x1,x2属于(0,正无穷大)且x1<x2
则f(x1)-f(x2)
=1/(x1^2+1)-1/(x2^2+1)
=(x2^2-x1^2)/(x1^2+1)(x2^2+1)
由0<x1<x2
知x2^2>x1^2
则x2^2-x1^2>0
故(x2^2-x1^2)/(x1^2+1)(x2^2+1)>0
故f(x1)-f(x2)>0
故函数fx在区间(0+∞)上单调递减。
追问
抱歉,你貌似误解了,是(1/x∧2)+1
追答
解判断函数fx在区间(0+∞)上单调递减
设x1,x2属于(0,正无穷大)且x1<x2
则f(x1)-f(x2)
=1/(x1^2)+1-1/(x2^2)-1
=(x2^2-x1^2)/(x1^2)(x2^2)
由0<x1<x2
知x2^2>x1^2
则x2^2-x1^2>0
故(x2^2-x1^2)/(x1^2)(x2^2)>0
故f(x1)-f(x2)>0
故函数fx在区间(0+∞)上单调递减。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询