如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点

如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F... 如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F. (1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长. 展开
 我来答
卡子是好人81
2014-12-04 · 超过72用户采纳过TA的回答
知道答主
回答量:133
采纳率:0%
帮助的人:162万
展开全部
解:(1)证明:如图,连接OD,

∵AB为⊙O的直径,∴∠ACB=90°。
∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°。
∴∠DAB=∠ABD=45°。∴△DAB为等腰直角三角形。
∴DO⊥AB。
∵PD为⊙O的切线,∴OD⊥PD。
∴DP∥AB。
(2)在Rt△ACB中,
∵△DAB为等腰直角三角形,∴
∵AE⊥CD,∴△ACE为等腰直角三角形。∴
在Rt△AED中,

∵AB∥PD,∴∠PDA=∠DAB=45°。∴∠PAD=∠PCD。
又∵∠DPA=∠CPD,∴△PDA∽△PCD。∴
∴PA= PD,PC= PD。
又∵PC=PA+AC,∴ PD+6= PD,解得PD=


试题分析:(1)连接OD,由AB为⊙O的直径,根据圆周角定理得∠ACB=90°,再由∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB。
(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到 ;由△ACE为等腰直角三角形,得到 ,在Rt△AED中利用勾股定理计算出DE= ,则CD= ,易证得∴△PDA∽△PCD,得到 ,所以PA= PD,PC= PD,然后利用PC=PA+AC可计算出PD。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式