已知定义在R上的函数f(x)满足f(2-x)+f(x)=0和f(x-2)+f(x)=0,且当x∈[1,2]时f(x)=1-(x-2)

已知定义在R上的函数f(x)满足f(2-x)+f(x)=0和f(x-2)+f(x)=0,且当x∈[1,2]时f(x)=1-(x-2)2.若直线y=kx(k为常数),与函数... 已知定义在R上的函数f(x)满足f(2-x)+f(x)=0和f(x-2)+f(x)=0,且当x∈[1,2]时f(x)=1-(x-2)2.若直线y=kx(k为常数),与函数f(x)的图象在区间(-2,5)上恰有4个公共点,则实数k的取值范围是(  )A.(215-8,0)B.(23-4,0)C.(-12,0)D.(-14,0) 展开
 我来答
手机用户80984
推荐于2016-02-27 · 超过60用户采纳过TA的回答
知道答主
回答量:176
采纳率:50%
帮助的人:61.7万
展开全部
∵f(2-x)+f(x)=0,
∴y=f(x)的图象关于(1,0)成中心对称对称;①
又f(x-2)+f(x)=0,
∴f(2-x)=f(x-2)=f[-(2-x)],
∴函数f(x)为偶函数;②
又f(x-2)+f(x)=0,
∴f(x-2)=-f(x),
∴f(x-4)=-f(x-2)=f(x),
∴函数f(x)是以4k(k∈Z且k≠0)为周期的函数;③
由函数f(x)为偶函数得:f(2-x)+f(x)=0?f(2+x)+f(-x)=0?f(2+x)+f(x)=0,
∴f(2+x)=f(2-x),即函数f(x)关于直线x=2对称,④
又当x∈[1,2]时f(x)=1-(x-2)2
∴由①②③④作图如下:
https://iknow-pic.cdn.bcebos.com/962bd40735fae6cd42f939d70cb30f2442a70f32?x-bce-process=image/quality,q_85
由图知,当k>0时,直线y=kx(k为常数)与函数f(x)的图象在区间(-2,5)上恰有3个公共点,不符合题意;
∴k<0,令y=g(x)=kx,
则g(4)=4k>-1,
解得:-
1
4
<k<0.
故选:D.
ys君8
2017-08-24
知道答主
回答量:1
采纳率:0%
帮助的人:971
展开全部
这一题选A
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式