如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作AF//BC交CE的延长线F,且AF=BD,连结BF。

 我来答
倪兴延燕
2020-02-24 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:1886万
展开全部
解:(1)
因为AF//BD
且AF=BD,所以FB=AD

因为E为AD中点,AD=FB,所以ED=1/2FB

所以ED为△CBF的中位蚂郑晌线

所以D为BC中点

(2)
答:
AFBD为平行四边型

因为AF//BD
且丛败AF=BD,所以FB=AD

FA=BD
FB=AD
且FA//BD
FB//AD

所以AFBD为平行四边型
(分也少了点吧..才5分=3=)
我靠~楼上的,你...你说闷锋他是矩形?不是哇?!
利淑英寻婵
2020-02-21 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:1061万
展开全部
1.
AF//BC
∴∠橡握CDE=∠FAE

E是AD的中点,
∠AEF=∠DEC

∴△ACE≌△FCE
∴AF=CD
∵AF=BD
∴CD=BD,D是BC的中点
2.
在△ABC中CD=BD,AB=AC,
∴AD是BC边上或如闹的高衫罩,即∠ADB=90°
又∵AF=BD
AF//BC
∴ADBF为矩形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
贸绿柳淡倩
2020-02-22 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:32%
帮助的人:832万
展开全部
因为AF//BC,所以∠AFE=∠ECD,
又∠AEF=∠CED,AE=ED
所以△FAE≌△CDE
所以CD=AF=BD
所以D是BC的中点
因为AF//BD且AF=BD
所以四做银辩边形AFBD是平行四边搏祥形
又AB=AC,D是BC中点,所以AD垂直BC,所以四边形AFBD是矩形纯缺
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
闽有福漫未
2020-02-19 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:28%
帮助的人:1128万
展开全部
因为AF//BC,所以∠AFE=∠ECD,
又∠AEF=∠CED,AE=ED
所以△FAE≌△CDE
所以CD=AF=BD
所以D是BC的中点
因为AF//BD且AF=BD
所以四做银辩边形AFBD是平行四边搏祥形
又AB=AC,D是BC中点,所以AD垂直BC,所以四边形AFBD是矩形纯缺
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式