设数列{求an}的前n项和为Sn,已知a1=a,Sn+1=2Sn+n+1 数列{an}的同乡公式
1个回答
展开全部
解:1)(Sn+1)
+
n
+
3
=
2[(Sn)
+
n
+
2],而且S1
+
3
=
a
+
3
当a
≠
-3时,数列{(Sn)
+
n
+
2}构成一个以a
+
3为首项,2为公比的等比数列,因此(Sn)
+
n
+
2
=
(a
+
3)*2
n
–
1
=>
Sn
=
(a
+
3)*2
n
–
1
–
n
–
2
=>
当n
≥
2,n∈N时,an
=
Sn
–
Sn-1
=
(a
+
3)
*2
n
–
2
–
1
检查a1是否符合上式,可得,
当
a
=
1
时,
an
=
(a
+
3)
*2
n
–
2
–
1
=
2
n
–
1
,
(n
∈
Z
+
)
;
当
a
≠
1
而且
a
≠
-3
时,
an
={
a
,
(n
=
1)
{
(a
+
3)
*2
n
–
2
–
1
,
(n
≥
2
,
n
∈
N)
;
当a
=
-
3时,S
2
+
4
=
0
=>
S
2
=
-4
=>
a2
=
-1
;S
3
=
2S
2
+
3
=
-5
=>
a3
=
-1,Sn+1
=
(2Sn)
+
n
+
1
=>
当n
≥
2,n∈N时,Sn
=
(2Sn-1)
+
n
=>
an+1
=
2an
+
1
=>
(an+1)
+
1
=
2[(an)
+
1],而a2
=
-1,所以以后的每一项都是
-1
,可得
当
a
=
-
3
时,
an
=
{
-3
,
(n
=
1)
{
-1
,
(n
≥
2
,
n
∈
N)
;
2)当a
=
1时,an
=
2
n
–
1
=>
bn
=
n/an+1-an
=
n/[2
n+1
–
2
n
]
=
n/2
n
所以{bn}的前n项和为1/2
1
+
2/2
2
+
3/2
3
+
……
+
(n
-
1)/2
n
-1
+
n/2
n
=
(1/2
1
+
1/2
2
+
1/2
3
+
……
+
1/2
n
-1
+
1/2
n
)
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
(1/2)*[1
-
(1/2)
n
]
/
[1
–
(1/2)]
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
1
–
(1/2)
n
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
1
–
(1/2)
n
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
……
=
1
–
(1/2)
n
+
(1/2)[1
–
(1/2)
n
-
1
]
+
(1/4)
[1
–
(1/2)
n
-
2
]
+
……
+
(1/2)
n-2
[1
–
(1/2)
2
]
+
(1/2)
n-1
[1
-
(1/2)
1
]
=
1
+
(1/2)
+
(1/2)
2
+
……
+
(1/2)
n-1
–
n(1/2)
n
=
1[1
–
(1/2)
n
]/
[1
–
(1/2)]
–
n(1/2)
n
=
2[1
–
(1/2)
n
]
–
n(1/2)
n
=
2
–
(n
+2)
(1/2)
n
<
2
,得证。
+
n
+
3
=
2[(Sn)
+
n
+
2],而且S1
+
3
=
a
+
3
当a
≠
-3时,数列{(Sn)
+
n
+
2}构成一个以a
+
3为首项,2为公比的等比数列,因此(Sn)
+
n
+
2
=
(a
+
3)*2
n
–
1
=>
Sn
=
(a
+
3)*2
n
–
1
–
n
–
2
=>
当n
≥
2,n∈N时,an
=
Sn
–
Sn-1
=
(a
+
3)
*2
n
–
2
–
1
检查a1是否符合上式,可得,
当
a
=
1
时,
an
=
(a
+
3)
*2
n
–
2
–
1
=
2
n
–
1
,
(n
∈
Z
+
)
;
当
a
≠
1
而且
a
≠
-3
时,
an
={
a
,
(n
=
1)
{
(a
+
3)
*2
n
–
2
–
1
,
(n
≥
2
,
n
∈
N)
;
当a
=
-
3时,S
2
+
4
=
0
=>
S
2
=
-4
=>
a2
=
-1
;S
3
=
2S
2
+
3
=
-5
=>
a3
=
-1,Sn+1
=
(2Sn)
+
n
+
1
=>
当n
≥
2,n∈N时,Sn
=
(2Sn-1)
+
n
=>
an+1
=
2an
+
1
=>
(an+1)
+
1
=
2[(an)
+
1],而a2
=
-1,所以以后的每一项都是
-1
,可得
当
a
=
-
3
时,
an
=
{
-3
,
(n
=
1)
{
-1
,
(n
≥
2
,
n
∈
N)
;
2)当a
=
1时,an
=
2
n
–
1
=>
bn
=
n/an+1-an
=
n/[2
n+1
–
2
n
]
=
n/2
n
所以{bn}的前n项和为1/2
1
+
2/2
2
+
3/2
3
+
……
+
(n
-
1)/2
n
-1
+
n/2
n
=
(1/2
1
+
1/2
2
+
1/2
3
+
……
+
1/2
n
-1
+
1/2
n
)
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
(1/2)*[1
-
(1/2)
n
]
/
[1
–
(1/2)]
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
1
–
(1/2)
n
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
1
–
(1/2)
n
+
[1/2
2
+
2/2
3
+
……
+
(n
-
2)/2
n
-1
+
(n
-
1)/2
n
]
=
……
=
1
–
(1/2)
n
+
(1/2)[1
–
(1/2)
n
-
1
]
+
(1/4)
[1
–
(1/2)
n
-
2
]
+
……
+
(1/2)
n-2
[1
–
(1/2)
2
]
+
(1/2)
n-1
[1
-
(1/2)
1
]
=
1
+
(1/2)
+
(1/2)
2
+
……
+
(1/2)
n-1
–
n(1/2)
n
=
1[1
–
(1/2)
n
]/
[1
–
(1/2)]
–
n(1/2)
n
=
2[1
–
(1/2)
n
]
–
n(1/2)
n
=
2
–
(n
+2)
(1/2)
n
<
2
,得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询