能否被7、11、13整除?

六位数ABCABC... 六位数ABCABC 展开
 我来答
孙芳钟离运珧
2020-07-18 · TA获得超过3688个赞
知道大有可为答主
回答量:3054
采纳率:25%
帮助的人:209万
展开全部
奇位千进位的总和与偶位千进位的总和之差,能被7或11,或13整除。
7*11*13=1001
1,001的差是0
能被7、11、13整除的数的特征是,这个数的末三位上的数字所组成的数与末三位以前的数字所组成的数之差(或反过来)能被7、11、13整除.这是因为任一自然数
A=an·10n+…+a3·103+a2·102+a1·10+a0,
设末三位上的数字所组成的数为N,末三位以前的数字所组成的数为M,则
N=a2·102+a1·10+a0,
M=an·10n-8+an-1·10n-4+…+a3.
于是
A=M·1000+N=(M·1000+M)+(N-M)
=M(1000+1)+N-M
如果N>M,则
A=1001M+(N-M);
如果N<M,则
A=1001M-(M-N).
上面两式中,1001能被7、11、13整除,从而第一项1001M也能被
7、11、13整除,所以
A能被
7、11、13整除的特征是(N-M)或(M-N)能被7、11、13整除.能被11整除的数还有另一个特征:即奇数位上的各数之和与偶数位上的各数之和的差(或反过来)能被11整除.例如:
72358=7×(9999+1)+2×(1001-1)+3
×(99+1)+5×(11-1)+8
=(7×9999+2×1001+3×99+5×11)
+[(7+3+8)-(2+5)],
上面最后一个式子中,第一个加数能被11整除,因此72538能否被11整除就取决于第二个加数能否被11整除。这里
(7+3
+8)-(2+5)=11,
它当然能被11整除,所以11|72358.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式