为什么开区间不适用闭区间套定理?
1个回答
展开全部
是因为极限和闭区间的性质。当n趋向∞时,区间两端收敛于同一极限,显然这个极限在最初的区间[a,b]之间,并且由于闭区间性质,区间内的所有值都能取到,这个极限就是区间的公共点。
但是换成开区间就不一样了,区间端点是取不到的,可根据极限的性质(描述一种趋势),(a,b)间的点列完全可以以端点作为极限,所以当证明区间端点收敛于同一极限时,你就不能得出这个极限一定在区间内,更不能说它是所有区间的公共点。
定义
直线上介于固定的两点间的所有点的集合(不包含给定的两点),用(a,b)来表示(不包含两个端点a和b)。
开区间的实质仍然是数集,该数集用符号(a,b)表示,含义一般是在实数a和实数b之间的所有实数,但不包含a和b。相当于{x|a<x<b},记作(a,b) 取值不包括a、b。
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询