椭圆上一点到焦点的距离与到准线的距离的比是一个定值。
1个回答
展开全部
准线:对于椭圆方程(以焦点在X轴为例) x^2/a^2+y^2/b^2=1(a>b>0,a为长半轴,b为短半轴,c为焦距的一半)
性质:椭圆上一点到焦点的距离与到准线的距离的比是一个定值。
椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。
扩展资料:
椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询