如何利用二重积分的几何意义求解空间立体的体积
利用二重积分的几何意义求解空间立体的体积如下:
通过二重积分的几何意义,我们知道,当f(x,y)>0时,二重积分Df(x,y)dxdy在几何上表示为以z=f(x,y)为曲顶,D为底的曲顶柱体的体积.因此,我们可以根据二重积分的几何意义计算空间立体的体积.在具体解题时。
我们可以通过画出空间立体图形找到被积函数f(x,y)和积分区域D,然后把二重积分化为累次积分计算,最终得到空间立体的体积.但是,这种解题方法的缺点是当空间立体的图形难以描绘时,就很难确定被积函数f(x,y)和积分区域D,而无法计算空间立体的体积。
围成立体体积的方程中只有一个含z的方程(z=0除外)在这种情形下,把只有一个含有z的方程,改写成z=f(x,y)(f(x,y)>0)的形式,那么二元函数z=f(x,y)就是该立体的顶,从而得到计算该立体体积的二重积分的被积函数就是f(x,y)
下面,我们确定积分区域,把不含z的方程在x0y直角坐标平面上围成的区域,记为D若D是有界区域,则D就是积分区域.若D是无界区域,则需进一步令含有z的方程(Z=0除外)中的z为0,从而得f(x,y)=0,方程f(x,y)=0与不含z的方程在x0y。
直角坐标平面上围成的区域必有界,这个激蔽有界区域就是积分区域。
二重积分的几何意义和数值意义。
1、几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负谈闷。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分,其中,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。
2、数值意义
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。如函数,其积分区域D是由所围成的区域。其中二重积分是一个常数,不妨设它为A。
对等式两端对D这个积分区域作二重定积分。故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
2021-01-25 广告