已知,抛物线y=-x²+4x+m的顶点是A,与x轴交于B、C两点(B在C的左侧)(1)若
2个回答
展开全部
(1)
x = -1, y = -1 - 4 + m = 0
m = 5
(2)
抛物线的对称轴为x = 2
A(2, m + 4)
-x² + 4x + m = 0
x1 = 2 - √(m + 4)
x2 = 2 + √(m + 4)
B,C为不同的点,则需二根不等, 即m不为-4
BC² = [2√(m + 4)]² = 4(m +4)
AB² = AC² = [2 - √(m + 4) - 2]² + [0 - (m +4)]² = (m + 4)(m + 5)
按余弦定理:
cos∠BAC = (AB² + AC² - BC²)/(2AB*AC) = [2(m + 4)(m + 5) - 4(m + 4)]/[2(m +4)(m+5)]
= (m+3)(m+4)/[(m +4)(m +5)]
= (m + 3)/(m + 5)
tan∠BAC = 4/3, 可得cos∠BAC = 3/5
(m + 3)/(m + 5) = 3/5
m = 0
(3)
P(2, 3√3), D(13, 0)
tan∠PDO = 3√3/11 < 3√3/9 = √3/3 = tan30°,∠PDO < 30°
∠PEO > 30°, E(e, 0)在(2, 0)和D之间, 2 < e < 13
tan∠PEO = 3√3/(e - 2)
tan(∠PDO + ∠PEO) = tan60° = √3
tan(∠PDO + ∠PEO) = (tan∠PDO + tan∠PEO)/(1 - tan∠PDO*tan∠PEO)
= [3√3/11 + 3√3/(e - 2)]/{1 - [3√3/(e - 2)](3√3/11)} = √3
解得e = 19/2
E(19/2, 0)
x = -1, y = -1 - 4 + m = 0
m = 5
(2)
抛物线的对称轴为x = 2
A(2, m + 4)
-x² + 4x + m = 0
x1 = 2 - √(m + 4)
x2 = 2 + √(m + 4)
B,C为不同的点,则需二根不等, 即m不为-4
BC² = [2√(m + 4)]² = 4(m +4)
AB² = AC² = [2 - √(m + 4) - 2]² + [0 - (m +4)]² = (m + 4)(m + 5)
按余弦定理:
cos∠BAC = (AB² + AC² - BC²)/(2AB*AC) = [2(m + 4)(m + 5) - 4(m + 4)]/[2(m +4)(m+5)]
= (m+3)(m+4)/[(m +4)(m +5)]
= (m + 3)/(m + 5)
tan∠BAC = 4/3, 可得cos∠BAC = 3/5
(m + 3)/(m + 5) = 3/5
m = 0
(3)
P(2, 3√3), D(13, 0)
tan∠PDO = 3√3/11 < 3√3/9 = √3/3 = tan30°,∠PDO < 30°
∠PEO > 30°, E(e, 0)在(2, 0)和D之间, 2 < e < 13
tan∠PEO = 3√3/(e - 2)
tan(∠PDO + ∠PEO) = tan60° = √3
tan(∠PDO + ∠PEO) = (tan∠PDO + tan∠PEO)/(1 - tan∠PDO*tan∠PEO)
= [3√3/11 + 3√3/(e - 2)]/{1 - [3√3/(e - 2)](3√3/11)} = √3
解得e = 19/2
E(19/2, 0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询