如图,已知AB=AC,BD=CD,DB垂直AB,DC垂直AC,若E,F,G,H分别是各边的中点,
展开全部
(1)∵E、F、G、H分别是AB、AC、CD、DB的中点,
∴EH、FG为△ADB、△ADC的中位线.
∴EH=AD/2,FG=AD/2.
∴EH=FG.
(2)∵AB=AC, DB⊥AB,DC⊥AC,AD=AD
∴△ADB≌△ADC.(斜边直角边)
∴∠BAD=∠CAD.
∵AB=AC,∠BAD=∠CAD,AO=AO,
∴△BAO≌△CAO.(边角边)
∴∠BOA=∠COA,BO=CO.
∵∠BOA ∠COA=180°,
∴∠BOA=∠COA=90°.
∴AD⊥BC.
∵BO=CO,
∴AD垂直且平分BC.
∴EH、FG为△ADB、△ADC的中位线.
∴EH=AD/2,FG=AD/2.
∴EH=FG.
(2)∵AB=AC, DB⊥AB,DC⊥AC,AD=AD
∴△ADB≌△ADC.(斜边直角边)
∴∠BAD=∠CAD.
∵AB=AC,∠BAD=∠CAD,AO=AO,
∴△BAO≌△CAO.(边角边)
∴∠BOA=∠COA,BO=CO.
∵∠BOA ∠COA=180°,
∴∠BOA=∠COA=90°.
∴AD⊥BC.
∵BO=CO,
∴AD垂直且平分BC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询