设f(x)是定义在R上的增函数,令g(x)=f(x)-f(2010-x)(1)求证g(x)+g(2010-x)时定值;(2)判
设f(x)是定义在R上的增函数,令g(x)=f(x)-f(2010-x)(1)求证g(x)+g(2010-x)时定值;(2)判断g(x)在R上的单调性,并证明;(3)若g...
设f(x)是定义在R上的增函数,令g(x)=f(x)-f(2010-x)(1)求证g(x)+g(2010-x)时定值;(2)判断g(x)在R上的单调性,并证明;(3)若g(x1)+g(x2)>0,求证x1+x2>2010.
展开
展开全部
(1)∵g(x)=f(x)-f(2010-x),
∴g(x)+g(2010-x)=f(x)-f(2010-x)+f(2010-x)-f(x)=0为定值.
(2)g(x)在R上的增函数,设x1<x2,则2010-x1>2010-x2,
∵f(x)是R上的增函数∴f(x1)<f(x2),f(2010-x1)>f(2010-x2)
故g(x1)-g(x2)=f(x1)-f(2010-x1)-f(x2)+f(2010-x2)=[f(x1)-f(x2)]+[f(2010-x2)-f(2010-x1)]<0,
即g(x1)<g(x2),∴g(x)在R上的增函数.
(3)假设x1+x2≤2010,则x1≤2010-x2 ,故g(x1)≤g(2010-x2),
又g(2010-x2)=-g(x2),
∴g(x1)+g(x2)≤0,这与已知g(x1)+g(x2)>0矛盾,
∴x1+x2>2010.
∴g(x)+g(2010-x)=f(x)-f(2010-x)+f(2010-x)-f(x)=0为定值.
(2)g(x)在R上的增函数,设x1<x2,则2010-x1>2010-x2,
∵f(x)是R上的增函数∴f(x1)<f(x2),f(2010-x1)>f(2010-x2)
故g(x1)-g(x2)=f(x1)-f(2010-x1)-f(x2)+f(2010-x2)=[f(x1)-f(x2)]+[f(2010-x2)-f(2010-x1)]<0,
即g(x1)<g(x2),∴g(x)在R上的增函数.
(3)假设x1+x2≤2010,则x1≤2010-x2 ,故g(x1)≤g(2010-x2),
又g(2010-x2)=-g(x2),
∴g(x1)+g(x2)≤0,这与已知g(x1)+g(x2)>0矛盾,
∴x1+x2>2010.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询