设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠?”

设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠?”是真命题,则实数a的取值范围是... 设集合A={(x,y)|(x-4)2+y2=1},B={(x,y)|(x-t)2+(y-at+2)2=1},如果命题“?t∈R,A∩B≠?”是真命题,则实数a的取值范围是______. 展开
 我来答
超级斗帝681
2014-12-04 · TA获得超过105个赞
知道答主
回答量:134
采纳率:100%
帮助的人:53.6万
展开全部
解:∵A={(x,y)|(x-4)2+y2=1},表示平面坐标系中以M(4,0)为圆心,半径为1的圆,
B={(x,y)|(x-t)2+(y-at+2)2=1},表示以N(t,at-2)为圆心,半径为1的圆,且其圆心N在直线ax-y-2=0上,如图.
如果命题“?t∈R,A∩B≠?”是真命题,即两圆有公共点,则圆心M到直线ax-y-2=0的距离不大于2,
|4a?2|
a2+1
≤2
,解得0≤a≤
4
3

∴实数a的取值范围是0≤a≤
4
3

故答案为:0≤a≤
4
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式