已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程
已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程....
已知圆O的圆心在y轴上,截直线l1:3x+4y+3=0所得弦长为8,且与直线l2:3x-4y+37=0相切,求圆O的方程.
展开
1个回答
展开全部
设圆心M(0,b),半径R.圆M交L1于AB两点.AB=8,
做MN⊥L1,交L1于N点.则N平分AB. AN=4,
连AM,则AM=R.
|MN|=
=
,
|AN|2+|MN|2=R2=16+
,
点M到直线L2距离d=R(圆M与直线L2相切),
d2=R2=
,
∴16+
=
,
16×25=(37-3b+4b+3)(37-4b-4b-3),
8b=34-16×
=24,
b=3,
R2=
=25,
∴圆M的方程为:x2+(y-3)2=25.
做MN⊥L1,交L1于N点.则N平分AB. AN=4,
连AM,则AM=R.
|MN|=
|4b+3| | ||
|
|4b+3| |
5 |
|AN|2+|MN|2=R2=16+
(4b+3)2 |
25 |
点M到直线L2距离d=R(圆M与直线L2相切),
d2=R2=
(37?4b)2 |
25 |
∴16+
(4b+3)2 |
25 |
(37?4b)2 |
25 |
16×25=(37-3b+4b+3)(37-4b-4b-3),
8b=34-16×
25 |
40 |
b=3,
R2=
(37?4×3)2 |
25 |
∴圆M的方程为:x2+(y-3)2=25.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询