高数求解 为什么二重积分利用函数奇偶性会出现 偶倍奇零?

 我来答
帐号已注销
2019-08-04 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15万
展开全部

奇函数的积分会是0。即使不是奇函数,积分仍有可能是0。当积分区域关于x轴对称,若被积函数是关于y的奇函数,则积分值为0;若被积函数是关于y的偶函数,则积分值为“这部分对称区域”的两倍。

当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。

某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

扩展资料:

当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在直角坐标系下,面积元素dσ=dxdy。

奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。

参考资料来源:百度百科--二重积分

参考资料来源:百度百科--函数奇偶性

TableDI
2024-07-18 广告
Excel函数公式大全中的计数功能主要涵盖了几种常用的函数。其中,`COUNT`函数用于统计指定范围内非空单元格的数量;`COUNTIF`函数则能基于特定条件进行计数,如统计特定部门或满足某个数值条件的单元格数;而`COUNTIFS`函数更... 点击进入详情页
本回答由TableDI提供
教育小百科达人
2019-05-29 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:466万
展开全部

跟定积分原理一样。

在[-a,a]上,若f(x)为奇函数,f(-x)=-f(x),∫(-a,a) f(x) dx,令x=-u。

=∫(a,-a) f(-u)*(-du)

=∫(-a,a) f(-u) du

=∫(-a,a) -f(u) du

=-∫(-a,a) f(x) dx,移项得∫(-a,a) f(x) dx=0。

同理∫(-a,a) f(x) dx = 2∫(0,a) f(x) dx若f(x)为偶函数。

至于二重积分,若D关于x轴和y轴都是对称的。

而且被积函数是关于x或y是奇函数的话,结果一样是0。

例如D为x^2+y^2=1

则x,x^3,xy,xy^3,y^5,x^3y^3等等的结果都是0。

不要以为xy和x^3y^3是偶函数,奇偶性是对单一自变量有效的。

计算x时把y当作常数,所以对x的积分结果是0时,再没必要对y积分了。

扩展资料:

奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。

偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。

偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。

奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数。

f(x)为奇函数《==》f(x)的图像关于原点对称,点(x,y)→(-x,-y)。

奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

参考资料来源:百度百科--函数奇偶性

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lI50lI
推荐于2017-11-27 · TA获得超过9297个赞
知道大有可为答主
回答量:3193
采纳率:23%
帮助的人:1377万
展开全部
跟定积分原理一样
在[-a,a]上
若f(x)为奇函数,f(-x)=-f(x)
∫(-a,a) f(x) dx,令x=-u
=∫(a,-a) f(-u)*(-du)
=∫(-a,a) f(-u) du
=∫(-a,a) -f(u) du
=-∫(-a,a) f(x) dx,移项得
∫(-a,a) f(x) dx=0
同理∫(-a,a) f(x) dx = 2∫(0,a) f(x) dx若f(x)为偶函数

至于二重积分
若D关于x轴和y轴都是对称的
而且被积函数是关于x或y是奇函数的话,结果一样是0
例如D为x^2+y^2=1
则x,x^3,xy,xy^3,y^5,x^3y^3等等的结果都是0
不要以为xy和x^3y^3是偶函数,奇偶性是对单一自变量有效的
计算x时把y当作常数,所以对x的积分结果是0时,再没必要对y积分了
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式