在△ABC中,求证sinA+sinB-sinC=4sinA/2*sinB/2*cosC/2
http://zhidao.baidu.com/question/138618178.html请您来看看分在那边...
http://zhidao.baidu.com/question/138618178.html
请您来看看
分在那边 展开
请您来看看
分在那边 展开
1个回答
展开全部
sinA+sinB
=sin[(A+B)/2+(A-B)/2]+sin[(A+B)/2-(A-B)/2]
=sin(A+B)/2cos(A-B)/2+cos(A+B)/2sin(A-B)/2+sin(A+B)/2cos(A-B)/2-cos(A+B)/2sin(A-B)/2
=2sin(A+B)/2cos(A-B)/2
A+B=180-C
所以左边=2sin(90-C/2)cos(A-B)/2-2sinC/2cosC/2
=2cosC/2cos(A-B)/2-2sinC/2cosC/2
=2cosC/2[cos(A-B)/2-sinC/2]
=2cosC/2[cos(A-B)/2-sin(180-A-B)/2]
=2cosC/2[cos(A-B)/2-sin(90-A/2-B/2)]
=2cosC/2[cos(A/2-B/2)-cos(A/2+B/2)]
=2cosC/2(cosA/2cosB/2+sinA/2sinB/2-cosA/2cosB/2+sinA/2sinB/2)
=4cosCsinA/2sinB/2=右边
命题得证
=sin[(A+B)/2+(A-B)/2]+sin[(A+B)/2-(A-B)/2]
=sin(A+B)/2cos(A-B)/2+cos(A+B)/2sin(A-B)/2+sin(A+B)/2cos(A-B)/2-cos(A+B)/2sin(A-B)/2
=2sin(A+B)/2cos(A-B)/2
A+B=180-C
所以左边=2sin(90-C/2)cos(A-B)/2-2sinC/2cosC/2
=2cosC/2cos(A-B)/2-2sinC/2cosC/2
=2cosC/2[cos(A-B)/2-sinC/2]
=2cosC/2[cos(A-B)/2-sin(180-A-B)/2]
=2cosC/2[cos(A-B)/2-sin(90-A/2-B/2)]
=2cosC/2[cos(A/2-B/2)-cos(A/2+B/2)]
=2cosC/2(cosA/2cosB/2+sinA/2sinB/2-cosA/2cosB/2+sinA/2sinB/2)
=4cosCsinA/2sinB/2=右边
命题得证
参考资料: http://zhidao.baidu.com/question/138618178.html
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询