设(x0,y0)处
Δy=f(x0+Δx)-f(x0)=kΔx+o(Δx),
其中o(Δx)是比Δx更高阶的无穷小,比如不小于(Δx)²,在Δx--->0,o(Δx)/Δx--->0
k是常数(对于x0来说),
两边除以Δx
Δy/Δx=【f(x0+Δx)-f(x0)】/Δx=k+o(Δx)/Δx
三边取极限lim(Δx--->0)
dy/dx|(x=x0)=f'(x0)=k
因此:
Δy=f'(x)Δx+o(Δx),
dy=f'(x0)dx
dy=y'dx=2xcosx²dx
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
扩展资料
如果f是线性映射,那么它在任意一点的微分都等于自身。
在Rn(或定义了一组标准基的内积空间)里,函数的全微分和偏导数间的关系可以通过雅可比矩阵刻画。
当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。
微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。
2024-10-13 广告
如果函数的增量Δy = f(x0 + Δx) - f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小量,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。
通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。
对于y=xlnx,有:y'=lnx+1,故,所求微分:dy=(1+lnx)dx。