已知f(n)=1+1/2+1/3+...+1/n 用数学归纳法证明f(2^n)>n/2时,f(2^(k+1))-f(2^k)=?
3个回答
展开全部
n=1时,f(2)=1+1/2>1
假设当n=k时成立,下证当n=k+1时也成立
f(2^(k+1))=f(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))
>k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k))
注:(2^k+2^k)=2*2^k=2^(k+1)
从第二项起每项都用最后一项代替
>k/2+1/2^(k+1)+1/2^(k+1)+...+1/2^(k+1)
=k/2+2^k/2^(k+1)
=k/2+1/2
=(k+1)/2
不等式成立
假设当n=k时成立,下证当n=k+1时也成立
f(2^(k+1))=f(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))
>k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k))
注:(2^k+2^k)=2*2^k=2^(k+1)
从第二项起每项都用最后一项代替
>k/2+1/2^(k+1)+1/2^(k+1)+...+1/2^(k+1)
=k/2+2^k/2^(k+1)
=k/2+1/2
=(k+1)/2
不等式成立
展开全部
f(2^(k+1))-f(2^k)
=
1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))
按照题目就是这个结果
=
1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))
按照题目就是这个结果
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.
当n=1时,f(2^1)=f(2)=1+1/2=3/2,n/2=1/2,f(2^n)>n/2成立;
2.
假设当n=k(k>=0且k为整数)时
f(2^n)>n/2成立,即
f(2^k)>k/2,则当
n=k+1时,有
f(2^(k+1))=f(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1));则要证f(2^(k+1))>(k+1)/2,只要证k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>(k+1)/2,则只要证1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>1/2
1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>2^k*1/(2^(k+1))=1/2
说明:2^k个分式都大于1/(2^(k+1)),则它们的和大于2^k乘以1/(2^(k+1))
f(2^(k+1))-f(2^k)=1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>2^k*1/(2^(k+1))=1/2
综合1,2得对任意正整数n,f(2^n)>n/2
当n=1时,f(2^1)=f(2)=1+1/2=3/2,n/2=1/2,f(2^n)>n/2成立;
2.
假设当n=k(k>=0且k为整数)时
f(2^n)>n/2成立,即
f(2^k)>k/2,则当
n=k+1时,有
f(2^(k+1))=f(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1));则要证f(2^(k+1))>(k+1)/2,只要证k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>(k+1)/2,则只要证1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>1/2
1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>2^k*1/(2^(k+1))=1/2
说明:2^k个分式都大于1/(2^(k+1)),则它们的和大于2^k乘以1/(2^(k+1))
f(2^(k+1))-f(2^k)=1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))>2^k*1/(2^(k+1))=1/2
综合1,2得对任意正整数n,f(2^n)>n/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询