若ax2+ax+a+3>0对于一切实数x恒成立,则实数a的取值范围
若ax2+ax+a+3>0对于一切实数x恒成立,则实数a的取值范围,1)当a>0时,为使ax2+ax+a+3>0恒成立,则判别式a^2-4a(a+3)<0为啥<0啊啊...
若ax2+ax+a+3>0对于一切实数x恒成立,则实数a的取值范围,1)当a>0时,为使ax2+ax+a+3>0恒成立,则判别式a^2-4a(a+3)<0 为啥<0啊啊
展开
2个回答
展开全部
(1)当a=0时,此时不等式是:3>0,满足;
(2)当a≠0时,需要:
这个
抛物线
开口向上,且与x轴无交点,得:
①a>0且②△=a²-4a(a+3)<0
请结合
二次函数
图像来分析。
(2)当a≠0时,需要:
这个
抛物线
开口向上,且与x轴无交点,得:
①a>0且②△=a²-4a(a+3)<0
请结合
二次函数
图像来分析。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询