设数列{an}前n项和为Sn,已知对于所有的自然数n属于正正数,都有Sn=n(a1+an)/2,求证{an}是等差数列数列

设数列{an}前n项和为Sn,已知对于所有的自然数n属于正正数,都有Sn=n(a1+an)/2,求证{an}是等差数列... 设数列{an}前n项和为Sn,已知对于所有的自然数n属于正正数,都有Sn=n(a1+an)/2,求证{an}是等差数列 展开
匿名用户
2010-02-24
展开全部
an=Sn-Sn-1
=(na1+nan-na1+a1-nan+an)/2
=(a1+an)/2
得an=a1
即an-1=a1
an-an-1=0
所以此数列是公差为0的等差数列
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式