设X=a-b/a+b,y=b-c/b+c,z=c-a/c+a,求证;(1+x)(1+y)(1+z)=(1-x)(1-y)(1-z)
1个回答
展开全部
反证..
假设(1+x)(1+y)(1+z)=(1-x)(1-y)(1-z)成立
(1+x)(1+y)(1+z)/(1-x)(1-y)(1-z)=1
(1+x)/(1-x)乘(1+y)/(1-y)乘(1+z)/(1-z)=1
1+x=1+(a-b)/(a+b)=(a+b+a-b)/(a+b)=2a/(a+b)
1-x=1-(a-b)/(a+b)=2b/(a+b)
(1+x)/(1-x)=a/b
同理得:(1+y)/(1-y)=b/c,(1+z)/(1-z)=c/a
(1+x)/(1-x)乘(1+y)/(1-y)乘(1+z)/(1-z)=a/b乘b/c乘c/a=1显然成立
所以假设成立
汗..应该没打错吧...
假设(1+x)(1+y)(1+z)=(1-x)(1-y)(1-z)成立
(1+x)(1+y)(1+z)/(1-x)(1-y)(1-z)=1
(1+x)/(1-x)乘(1+y)/(1-y)乘(1+z)/(1-z)=1
1+x=1+(a-b)/(a+b)=(a+b+a-b)/(a+b)=2a/(a+b)
1-x=1-(a-b)/(a+b)=2b/(a+b)
(1+x)/(1-x)=a/b
同理得:(1+y)/(1-y)=b/c,(1+z)/(1-z)=c/a
(1+x)/(1-x)乘(1+y)/(1-y)乘(1+z)/(1-z)=a/b乘b/c乘c/a=1显然成立
所以假设成立
汗..应该没打错吧...
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询