advanced mathmatics~~~高等数学】特解系列-2,非齐次微分方程的特解

 我来答
sjh5551
高粉答主

2016-08-26 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7734万
展开全部
非齐次项若是 (e^2)xcos2a ,
设特解 y = Ax+B,代入微分方程得
A = (e^2)cos2a, B = 0
特解是 y = (e^2)xcos2a。

非齐次项若是 (e^2)xcos2x ,
设特解 y = (ax+b)cos2x+(cx+d)sin2x,
y' = acos2x-2(ax+b)sin2x+csin2x+2(cx+d)cos2x
= (2cx+2d+a)cos2x + (-2ax-2b+c)sin2x
y'' = 2ccos2x-2(2cx+2d+a)sin2x-2asin2x+2(-2ax-2b+c)cos2x
= (-4ax-4b+4c)cosx + (-4cx-4d-4a)sin2x
代入微分方程得
-3ax-3b+4c = (e^2)x
-3cx-3d-4a = 0
得 a = e^2/3, c = 0, b = 0, d = -4e^2/9
特解是 y = (e^2/3)xcos2x - (4e^2/9)sin2x。
追问

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式