1个回答
展开全部
这题用递推。
因为每一步只能上一级或两极,所以上1级楼梯有1种走法,上2级楼梯有2种走法。而上第3级楼梯的前一步,肯定是要上到第2层楼梯或第1层楼梯(因为每一步只能上一级或两极,反推,要上第3层,前一步必定要上第1层或第2层),所以上到第3级楼梯的走法种数等于上到第1级楼梯的走法种数与上到第2级楼梯的走法种数。
假设要上第n级楼梯,f(n)代表上到第n级楼梯的种数,则f(n)=f(n-1)+f(n-2)。也就是说,n的序列是一个斐波那契数列(即1 1 2 3 5 8 13 21 ……注:除去首项第一个1)。
所以最终答案是233
因为每一步只能上一级或两极,所以上1级楼梯有1种走法,上2级楼梯有2种走法。而上第3级楼梯的前一步,肯定是要上到第2层楼梯或第1层楼梯(因为每一步只能上一级或两极,反推,要上第3层,前一步必定要上第1层或第2层),所以上到第3级楼梯的走法种数等于上到第1级楼梯的走法种数与上到第2级楼梯的走法种数。
假设要上第n级楼梯,f(n)代表上到第n级楼梯的种数,则f(n)=f(n-1)+f(n-2)。也就是说,n的序列是一个斐波那契数列(即1 1 2 3 5 8 13 21 ……注:除去首项第一个1)。
所以最终答案是233
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询