求lim(x→0)sinx-e^x+1/1-√(1-x^2)极限
展开全部
x趋于0的时候,
e^x^2-1等价于x^2
而[√(1 +xsinx)-1]*[√(1 +xsinx)+1]=xsinx
于是等价于x^2 /2
所以就得到
原极限=lim(x→0) (x^2 /2) /x^2= 1/2
极限值为1/2
扩展资料
某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
求极限基本方法有
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。
高粉答主
2019-01-19 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询