5个回答
展开全部
{an}中,构造新数列a1,a2-a1,a3-a2,...an-an-1,..,此数缓厅列首项为1公比为1/3的等比数列
因为首项为1,等比为1/3
所以可以得出扰吵隐 a1 = 1, a2 = 4/3, a3 = 13/9, a4 = 40/27 。。。
可以看的出他的规律是 an = a(n-1) + 1/3^(n-1 )
a(n-1) = a(n-2) + 1/3^(n-2) 带入上面式
得出 an = a(n-2) + 1/3^(n-1) + 1/3^(n-2)
以此类推 得出 an = a1 + 1/3^(n-1) + 1/3^(n-2) + 。。。 + 1/3
an = 1 + 1/3^(n-1) + 1/3^(n-2) + 。。。 + 1/3
后面的是 首项为1/3,等比为1/3的等比数列。求和公式应该知道吧。
和为 :1/2 - 1/[2×3^(n-1)]
于是 an = 3/2 - 1/[2×3^(n-1)]
但是前n项的和碰庆我就不会了。
前n项之和为 :
因为首项为1,等比为1/3
所以可以得出扰吵隐 a1 = 1, a2 = 4/3, a3 = 13/9, a4 = 40/27 。。。
可以看的出他的规律是 an = a(n-1) + 1/3^(n-1 )
a(n-1) = a(n-2) + 1/3^(n-2) 带入上面式
得出 an = a(n-2) + 1/3^(n-1) + 1/3^(n-2)
以此类推 得出 an = a1 + 1/3^(n-1) + 1/3^(n-2) + 。。。 + 1/3
an = 1 + 1/3^(n-1) + 1/3^(n-2) + 。。。 + 1/3
后面的是 首项为1/3,等比为1/3的等比数列。求和公式应该知道吧。
和为 :1/2 - 1/[2×3^(n-1)]
于是 an = 3/2 - 1/[2×3^(n-1)]
但是前n项的和碰庆我就不会了。
前n项之和为 :
展开全部
A1=1
A2-A1=A1*1/3=1/3
..
An-A(n-1)=A1*(1/3)^(n-1)=1/3^(n-1)
左枝凯右两边分别相加兄册:
左边=A1+A2-A1+..+An-A(n-1)=An
=1+1/3+..+1/3^(n-1)
=1*(1-1/3^n)/(1-1/3)
An=(3/2)*(1-1/3^n)=3/2-3/(2*3^n)
前n项和猛尘唤=An=3/2-3/(2*3^n)
A2-A1=A1*1/3=1/3
..
An-A(n-1)=A1*(1/3)^(n-1)=1/3^(n-1)
左枝凯右两边分别相加兄册:
左边=A1+A2-A1+..+An-A(n-1)=An
=1+1/3+..+1/3^(n-1)
=1*(1-1/3^n)/(1-1/3)
An=(3/2)*(1-1/3^n)=3/2-3/(2*3^n)
前n项和猛尘唤=An=3/2-3/(2*3^n)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=1
a2-a1=1/3
.....
an-a(n-1)=1*(1/3)^(n-1)
相加拍庆裤得:
an=1+1/差中3+....1*(1/3)^(n-1)
=[1-(1/3)^n]/(1-1/3)
=3/2-(3/2)*(1/3)^n
Sn=a1+a2+.......+an
=[3/2-(3/2)*(1/3)]+[3/袭简2-(3/2)*(1/3)^2]+.....+[3/2-(3/2)*(1/3)^n]
=(3/2)*n-(3/2)*[1/3+(1/3)^2+.....+(1/3)^n]
=(3/2)*n-(3/4)*[1-(1/3)^n]
我打那么多括号只是为了你看的明白些
a2-a1=1/3
.....
an-a(n-1)=1*(1/3)^(n-1)
相加拍庆裤得:
an=1+1/差中3+....1*(1/3)^(n-1)
=[1-(1/3)^n]/(1-1/3)
=3/2-(3/2)*(1/3)^n
Sn=a1+a2+.......+an
=[3/2-(3/2)*(1/3)]+[3/袭简2-(3/2)*(1/3)^2]+.....+[3/2-(3/2)*(1/3)^n]
=(3/2)*n-(3/2)*[1/3+(1/3)^2+.....+(1/3)^n]
=(3/2)*n-(3/4)*[1-(1/3)^n]
我打那么多括号只是为了你看的明白些
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-03-23
展开全部
an-a(n-1)=(1/如消3)^(n-1)
a(n-1)- a(n-2)= (1/渣拦知3)^(n-2)
……..
a2-a1=1/衡模3
a1=1
累加得
an=-(3/2)^(1-n)+3/2 (n∈N+)
分组求和
sn=3/4(1/3)^n+3n/2-3/4
(n∈N+)
a(n-1)- a(n-2)= (1/渣拦知3)^(n-2)
……..
a2-a1=1/衡模3
a1=1
累加得
an=-(3/2)^(1-n)+3/2 (n∈N+)
分组求和
sn=3/4(1/3)^n+3n/2-3/4
(n∈N+)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
新哪辩数列为橘祥{bn}
则前n项和为Sn=a1(1-q^n)/(1-q)=1*(1-(1/3)^n)/(2/3)
Sn=a1+a2-a1+a3-a2+...+an-an-1=an
所以an=1*(1-(1/3)^n)/(2/3)
=3/李伍缺2-3/(2*3^n)
则前n项和为Sn=a1(1-q^n)/(1-q)=1*(1-(1/3)^n)/(2/3)
Sn=a1+a2-a1+a3-a2+...+an-an-1=an
所以an=1*(1-(1/3)^n)/(2/3)
=3/李伍缺2-3/(2*3^n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询