2013-11-05
展开全部
一、知识要点概述1、与圆有关的概念 (1)圆可以看做是平面内到定点的距离等于定长的点的集合,它是以圆心为对称中心的中心对称图形,又是以每一条直径所在的直线为对称轴的轴对称图形.不在同一直线上的三点确定一个圆. (2)圆中的弦、弧、弦心距、同心圆、等圆、等弧等概念.2、与圆有关的角 (1)圆心角与圆周角的概念、弦切角的概念. (2)在同圆(或等圆中)同弧(或等弧)所对的圆周角是它所对圆心角的一半. (3)弦切角等于它夹弧所对的圆周角. (4)圆周角定理及其推论3、圆的对称性 (1)圆的轴对称性(垂径定理):垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;弦的中垂线经过圆心,并且平分弦所对的两条弧. (2)圆的旋转对称性:在同圆或等圆中,有如下相等关系: 等弦等弧等弦心距等圆心角4、圆的两条平行弦所夹的弧相等.5、圆内接四边形对角互补,任何一个外角都等于它的内对角;圆外切四边形的两组对边之和相等.6、如果弧长为l,圆心角的度数为n°,弧所在的圆的半径为r,那么弧长的计算公式为,圆周长C=2πr.7、设扇形的圆心角为n°,扇形的半径为r,扇形面积为S,则扇形的面积计算公式为:.8、圆柱的侧面展开图是矩形,设圆柱的底面半径为r,圆柱的高为h,则圆柱的侧面积S=2πrh,圆柱的全面积为S=2πr2+2πrh.9、圆锥的侧面展形图是扇形,设圆锥的底面半径为r,母线长为a,则圆锥的侧面积为,圆锥的全面积为.二、典例剖析例1、如图,在⊙O中,过圆周上一点A作弦AB和AC且AB=AC.M和N分别为弦AB及AC的中点,连结M和N并向两方向延长交圆于P和Q两点. 求证:PM=NQ.分析: 欲证PM=NQ,因为PQ为弦,容易联想到作弦心距OH,则PH=HQ.现只要证MH=HN即可.又M、N分别为弦AB、AC的中点,易知OM=ON,故原结论可证.证明:作OH⊥PQ于H,则PH=HQ. 连结OM、ON, ∵M、N分别是弦AB、AC的中点, ∴OM⊥AB,ON⊥AC. 又∵AB=AC,∴OM=ON. 又∵OH⊥MN,∴MH=HN, ∴PM=NQ.例2、如图,△ABC内接于⊙O,弦CM⊥AB,CN是直径,F是的中点. 求证:(1)CF平分∠NCM; (2).分析: (1)欲证∠1=∠2,应设法转化.因为AB为弦,F为的中点,不难想到连结OF,则OF//CM,∠OFC=∠2.而∠OFC=∠1,∴∠1=∠2. (2)欲证,只需证,即证∠NOF=∠MOF即可. 由OF//CM,只要证∠OCM=∠OMC就行.证明:(1)连结OF. ∵F为的中点, ∴OF⊥AB. 又CM⊥AB, ∴OF//CM,∴∠OFC=∠2. 又OC=OF,∴∠OFC=∠1, ∴∠1=∠2,即CF平分∠NCM. (2)连结OM,则∠OMC=∠MCO. ∵OF//CM,∴∠NOF=∠MCO,∠FOM=∠OMC, ∴∠NOF=∠FOM, 例3、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160米.假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由;如果受影响,那么学校受影响的时间为多少秒?(拖拉机的速度为18千米/时)分析: 学校受噪声影响的条件是拖拉机在行驶的过程中距点A的距离小于100米,所以以A为圆心,以100米为半径作⊙A.若⊙A与MN有交点,则学校受到噪声影响.若⊙A与MN无交点,则学校不受噪声影响.解:如图,过A点作AB⊥MN于B. 在Rt△PAB中,∠QPN=30°,PA=160米, ∴AB=PAsin30°=80米<100米, ∴学校受噪声影响. 以点A为圆心,以100米为半径作⊙A交MN于C、D两点. 连结AC,则, ∴CD=120米. 又拖拉机的速度为, 故学校受噪声影响的时间为.例4、如图,⊙O的内接四边形ABCD的对角线AC⊥BD,OE⊥BC于E.求证:.分析: 设法构造2OE,能证它与AD相等即可.由O为圆心,OE为弦心距,不难知BF=2OE.再证BF=AD,即证AF//BD.证明: 作直径CF,连结AF、BF. ∵OE⊥BC,∴E为BC的中点. 又∵CF为直径,O为圆心, ∴(三角形中位线定理). ∵CF为直径,∴∠CAF=90°,即FA⊥AC. 又∵AC⊥BD,∴FA//BD, ∴∠FAB=∠ABD, ∴,BF=AD, ∴.例5、如图,⊙O的半径为12cm,以⊙O的半径OA为直径作⊙O′交半径OC于B点.若∠AOC=45°,求围成的阴影图形的面积.解:连结AB,则∠ABO=90°. ∵∠AOB=45°,∴,S弓形AB=S弓形OB. 由OA=12cm知S△ABO=36cm2, 例6、如图,⊙O与⊙O′外切于点M,AB、CD是它们的外公切线,O′E⊥OA,垂足为E,且∠AOC=120°. (1)求证:⊙O′的周长等于的弧长; (2)若⊙O′的半径为1cm,求图中阴影部分的面积.解:(1)证明如下: 由已知得∠AOO′=60°,四边形ABO′O为直角梯形, 设⊙O和⊙O′的半径分别为R、r, 例7、一个圆锥的高为cm,侧面展开图是半圆.求: (1)圆锥的母线与底面半径之比; (2)锥角的大小; (3)圆锥的表面积.解: 如图,AO为圆锥的高h,经过AO的剖面是等腰△ABC,则AB为圆锥的母线l,BO为底面半径r. (1)∵圆锥的侧面展开图是半圆, ∴2πr=πl,即. (2)∵,即AB=2OB, ∴∠BAO=30°,∴∠BAC=60°, 即锥角为60°. (3)在Rt△AOB中,l2=h2+r2. 又∵l=2r,, ∴r=3cm,l=6cm, ∴S表=S侧+S底=πrl+πr2=3×6π+32π=27π(cm2).例8、如图,在△ABC中,∠BAC=30°,AC=2a,BC=b,以直线AB为轴旋转一周得到一个几何体.求这个几何体的表面积.分析: 解本题的关键是要想象出旋转后的空间图形.过C作CO⊥AB于O,∵AC=2a,∠A=30°,∴CO=a.显然以直线AB为轴旋转一周得到的几何体是底面重合的两个圆锥,其底面半径为OC,所以这个几何体的表面积S是两个圆锥的侧面积S1与S2的和.解:过C作CO⊥AB于O. 因为AC=2a,∠A=30°, 所以CO=a, ∴S1=·2a·2πa=2πa2, S2=·b·2πa=πab, 故S=S1+S2=2πa2+πab=πa(2a+b).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询