已知关于x的方程2x^2+(2k-3)x-k^2=0有两个实根x1和x2.

已知关于x的方程2x^2+(2k-3)x-k^2=0有两个实根x1和x2.(1)是否存在常数k,使得x1,x2满足x1/x2=2?如果存在,试求出满足条件的k值;... 已知关于x的方程2x^2+(2k-3)x-k^2=0有两个实根x1和x2. (1)是否存在常数k,使得x1,x2满足x1/x2=2?如果存在,试求出满足条件的k值;如果不存在,请说明理由; (2)是否存在常数k,使得x1,x2满足|x1/x2|=2?如果存在,试求出满足条件的k值;如果不存在,请说明理由; 展开
 我来答
缪韵宣寄波
2020-04-26 · TA获得超过3945个赞
知道大有可为答主
回答量:3106
采纳率:33%
帮助的人:217万
展开全部
已知关于x的方程2x^2+(2k-3)x-k^2=0有两个实根x1和x2.
(1)是否存在常数k,使得x1,x2满足x1/x2=2?如果存在,试求出满足条件的k值;如果不存在,请说明理由;
根据“韦达定理”得:
x1+x2=-(2k-3)/2=(3-2k)/2
x1x2=-k^2/2
x1/x2=2,即x1=2x2,代入x1x2=-k^2/2:
2x2^2=-k^2/2>=0,那么k=0
代入原方程是:2x^2-3x=0
解得x1=0,x2=3/2
不符x1/x2=2,故说明不存在。
(2)是否存在常数k,使得x1,x2满足|x1/x2|=2?如果存在,试求出满足条件的k值;如果不存在,请说明理由;
|x1/x2|=2
|x1|=|2x2|
(i)x1=2x2
同上,不存在。
(ii)x1=-2x2
x1x2=-2x2^2=-k^2/2
k^2=4x2^2
x1+x2=-x2=(3-2k)/2
k^2=4*(3-2k)^2/4
k^2=(3-2k)^2
k=3-2k,或k=-(3-2k)
k=1或k=3
k=+1.代入原方程:2x^2-x-1=0,方程有解。x1=1,x2=-1/2
k=3
代入,2x^2+3x-9=0,解得:x1=-3.x2=3/2
符合题意,故存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式