1题文如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD 20

1题文如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD的下方作等边△CDE,连结BE。第一问不需要答,只答第二问。拜托了。... 1题文如图,在等边△ABC中,线段AM为BC边上的中线,动点D在直线AM上时,以CD为一边且在CD的下方作等边△CDE,连结BE。 第一问不需要答,只答第二问。 拜托了。 展开
 我来答
南霸天mxw
2015-02-15 · 知道合伙人教育行家
南霸天mxw
知道合伙人教育行家
采纳数:6329 获赞数:169950
本人毕业于河西学院计算机系,本科学位,自2008年毕业以来任九年级数学教师至今。

向TA提问 私信TA
展开全部
1)因为△ABC与△DEC都兄败是等边三角形
所以AC=BC,CD=CE,∠ACB=∠DCE=60°
所以∠ACD+∠DCB=∠DCB+∠BCE
所以∠ACD=∠BCE
所以△ACD≌△BCE(SAS)
所以AD=BE,
所以 =1
(2)①当点D在线段伏没AM上(不与点A重合)时,
由(1)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,作CH⊥BE于点H,则PQ=2HQ,连接CQ,则CQ=5.在Rt△CBH中,∠CBH=30°,BC=AB=8,则CH=BC•sin30°=8×(1/2) =4.
在Rt△CHQ中,由勾股定理得:HQ=根号(5^2-4^2)=3 ,则PQ=2HQ=6.
②当点D在线段AM的延长线上时,
因为△ABC与△DEC都是等边三角形
所以AC=BC,CD=CE,∠ACB=∠DCE=60°
所以∠ACB+∠DCB=∠DCB+∠羡厅颤DCE
所以∠ACD=∠BCE
所以△ACD≌△BCE
所以∠CBE=∠CAD=30°,同理可得:PQ=6
③当点D在线段MA的延长线上时,
因为△ABC与△DEC都是等边三角形
所以AC=BC,CD=CE,∠ACB=∠DCE=60°
所以∠ACD+∠ACE=∠BCE+∠ACE=60°
所以∠ACD=∠BCE
所以△ACD≌△BCE
所以∠CBE=∠CAD
因为∠CAM=30°
所以∠CBE=∠CAD=150°
所以∠CBQ=30°
同理可得:PQ=6
综上,PQ的长是6.
追问
不是这个吧?我刚刚在网上看过了,不是,他是问ad\be的值变不变。请你再看一下,好吗?
[加油哦],点击[ http://pinyin.cn/e4183 ]查看表情
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式