为什么8位二进制的补码取值范围是-128~127

请在帮忙回答一下8位二进制的原码和反码的范围是-127~127... 请在帮忙回答一下8位二进制的原码和反码的范围是-127~127 展开
 我来答
echo丶je
推荐于2019-08-02 · TA获得超过2622个赞
知道答主
回答量:5
采纳率:0%
帮助的人:5205
展开全部

首先八位二进制数 0000 0000 ~1111 1111,一共可以表示 2^8=256 位数,如果表示无符号整数可以表示0~255。计算方法就是二进制与十进制之间的转换。

如果想要表示有符号整数,就要将最前面一个二进制位作为符号位,即0代表正数,1代表负数,后面7位为数值域,这就是原码定义。这样在现实生活中完全没有问题,但在计算机中就出现了问题。

  • 数的表示:
    在原码中,0的表示有两种(+0)0000 0000、(-0)1000 0000,这样就产生了编码映射的不唯一性,在计算机上就要区分辨别。然而+0、-0却没有什么现实意义。

  • 数的运算:
    为了解决上述数的表示问题,我们可以强制把转换后的10000000强制认定为-128。但这又出现了一个新的问题就是数的运算。数学上,1+(-1)=0,而在二进制中00000001+10000001=10000010,换算成十进制为-2。显然出错了。所以原码的符号位不能直接参与运算,必须和其他位分开,这就增加了硬件的开销和复杂性。
    这个时候就要引入补码,补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。反码定义为:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

  • 但为什么要引入补码呢?

  • 以及负数补码定义为什么是相对应的正数原码取反加一?

一、为什么要引入补码?

先解决第一个问题,引入补码是为了解决计算机中数的表示和数的运算问题,使用补码,可以将符号位和数值域统一处理,即引用了模运算在数理上对符号位的自动处理,利用模的自动丢弃实现了符号位的自然处理,仅仅通过编码的改变就可以在不更改机器物理架构的基础上完成的预期的要求。

二、什么是“模”?

模的概念可以帮助理解补数和补码。 

“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范围,即都存在一个“模”。例如: 时钟的计量范围是0~11,模=12。表示n位的计算机计量范围是0~2^(n)-1,模=2^(n)。

“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数。任何有模的计量器,均可化减法为加法运算。例如:假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:一种是倒拨4小时,即:10-4=6;另一种是顺拨8小时:10+8=12+6=6 在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特性。共同的特点是两者相加等于模。

对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再加1成为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的模为2^8。在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以了。把补数用到计算机对数的处理上,就是补码。

对一个正数的原码取反加一,得到这个正数对应负数的补码。例如~6=-7,而且加一之后会多出一个八进制补码1000 0000,而这个补码就对应着原码1000 0000,数字位同时当做符号位即-128。

根据以上内容我们就可以来解释八位二进制数的表示范围:

  1. 八位二进制正数的补码范围是0000 0000 ~ 0111 1111 即0 ~ 127,负数的补码范围是正数的原码0000 0000 ~ 0111 1111 取反加一(也可以理解为负数1000 0000 ~ 1111 1111化为反码末尾再加一);

  2. 所以得到 1 0000 0000 ~ 1000 0001,1000 0001作为补码,其原码是1111 1111(-127),依次往前推,可得到-1的补码为1111 1111,那么补码0000 0000的原码是1000 0000符号位同时也可以看做数字位即表示-128,这也解释了为什么127(0111 1111)+1(0000 0001)=-128(1000 0000)。

总结:

在计算机中数据用补码表示,利用补码统一了符号位与数值位的运算,同时解决了+0、-0问题,将空出来的二进制原码1000 0000表示为-128,这也符合自身逻辑意义的完整性。因此八位二进制数表示范围为-128~+127。

补充资料:

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。

原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。

参考资料:

百度百科 补码

百度百科 原码

搞怪一乐
高粉答主

推荐于2019-10-10 · 醉心答题,欢迎关注
知道小有建树答主
回答量:477
采纳率:100%
帮助的人:15.4万
展开全部

八位二进制正数的补码范围是0000 0000 ~ 0111 1111 即0 ~ 127,负数的补码范围是正数的原码0000 0000 ~ 0111 1111 取反加一(也可以理解为负数1000 0000 ~ 1111 1111化为反码末尾再加一)。 

所以得到 1 0000 0000 ~ 1000 0001,1000 0001作为补码,其原码是1111 1111(-127),依次往前推,可得到-1的补码为1111 1111,那么补码0000 0000的原码是1000 0000符号位同时也可以看做数字位即表示-128,这也解释了为什么127(0111 1111)+1(0000 0001)=-128(1000 0000)。

在计算机中数据用补码表示,利用补码统一了符号位与数值位的运算,同时解决了+0、-0问题,将空出来的二进制原码1000 0000表示为-128,这也符合自身逻辑意义的完整性。因此八位二进制数表示范围为-128~+127。

拓展资料:

补码的特性:

1、一个负整数(或原码)与其补数(或补码)相加,和为模。

2、对一个整数的补码再求补码,等于该整数自身。

3、补码的正零与负零表示方法相同。

参考资料:百度百科——补码

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
塔駡德
高粉答主

推荐于2019-09-07 · 关注我不会让你失望
知道答主
回答量:46
采纳率:0%
帮助的人:1.5万
展开全部

8位二进制的范围就是-128~127,也就是-2^7~2^7-1,所以反码也是这样。

计算机对有符号数(包括浮点数)的表示有三种方法:原码、反码和补码

8位原码能够表示数的范围是 -127~127

8位反码能够表示数的范围是 -127~127

8位补码能够表示数的范围是 -128~127

既然范围是-128~127,那肯定是用补码表示的。

扩展资料:

数的表示: 

在原码中,0的表示有两种(+0)0000 0000、(-0)1000 0000,这样就产生了编码映射的不唯一性,在计算机上就要区分辨别。然而+0、-0却没有什么现实意义。

数的运算: 

为了解决上述数的表示问题,我们可以强制把转换后的10000000强制认定为-128。但这又出现了一个新的问题就是数的运算。数学上,1+(-1)=0,而在二进制中00000001+10000001=10000010,换算成十进制为-2。显然出错了。所以原码的符号位不能直接参与运算,必须和其他位分开,这就增加了硬件的开销和复杂性。 

这个时候就要引入补码,补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。反码定义为:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

参考资料:二进制_百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
听不清啊
高粉答主

推荐于2017-10-13 · 说的都是干货,快来关注
知道顶级答主
回答量:7.8万
采纳率:89%
帮助的人:1.9亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沙里波特
2019-12-17 · TA获得超过5248个赞
知道大有可为答主
回答量:1.1万
采纳率:95%
帮助的人:630万
展开全部

在补码中,负数非负数,是一样多的。

字长 8 位,共有 256 组代码。

用其中的一半(128 个),表示负数,就是-128~-1。

用其中的一半(128 个),表示非负数,即 0~+127。

综合,就是-128  ~ +127。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式