如何判断二元函数的极限存在

 我来答
sefrullarula
2019-05-15
知道答主
回答量:9
采纳率:100%
帮助的人:1.8万
展开全部
二元函数的极限以定义是无法判定的
因为其极限的定义为以任意方式趋近于某点都趋近于某固定值。
而曲面上可以有无数种方式趋近某点
不像一元函数只有三种趋近方式,从左趋近,从右趋近,从左到右再趋近于点。
但是极限不存在却可以证明,因为只要你在这无数趋近方式中找到一种就可以验证其不存在。
考试上会暗示你这个极限一定会存在的
所以不用担心。
例如他让你求证lim(x→0,y→0)f(x,y)=0
此时你就不用证它 ,将其用公式求解即可。
城南齐花开
2018-05-01
知道答主
回答量:6
采纳率:0%
帮助的人:5114
展开全部
先将此二元函数求导,画出其导函数的图像,然后找出和x轴的交点,观察在交点左右侧的图像,如果左侧图像在x轴上方,右侧图像在x轴下方,那么就是极大值
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式