用换元法求定积分
2018-12-21 · 知道合伙人教育行家
关注
展开全部
I=∫(t=-1/2,1)f(t)dt
=∫(t=1/2,1)1/t^2dt+∫(t=-1/2,1/2)t^3*e^(t^4+1)dt
=-1/t|(t=1/2,1)+(1/4)*e^(t^4+1)|(t=-1/2,1/2)
=-1+1/2+0
=-1/2
拆开的两个积分中,前面一个是瑕积分,后面一个积分,其实用不着算,因为f(x)在闭区域内[-1/2,1/2]是奇函数,所以这个积分一定是为零,
=∫(t=1/2,1)1/t^2dt+∫(t=-1/2,1/2)t^3*e^(t^4+1)dt
=-1/t|(t=1/2,1)+(1/4)*e^(t^4+1)|(t=-1/2,1/2)
=-1+1/2+0
=-1/2
拆开的两个积分中,前面一个是瑕积分,后面一个积分,其实用不着算,因为f(x)在闭区域内[-1/2,1/2]是奇函数,所以这个积分一定是为零,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询