设函数f(x)=2cos²x+sin2x+a(a∈R).
3个回答
展开全部
解:f(x)=2cos²x+sin2x+a=cos2x+1+sin2x+a=(根号2)sin(2x+π/4)+a+1,sinx的最小证周期为2π,所以sin(2x+π/4)最小正周期为π。单调增区间:2kπ-π/2=<2x+π/4<=2kπ+π/2解得x递增区间为[kπ-π3/8,kπ+π1/8]k∈z。
(2)f(x)在[0,π/8
] 上递增,在[π/8,π/6]上递减∴当x=π/8时,f(x)=2
f(x)=根号2+a+1=2,a=1-根号2
轴对称方程:2x+π/4=kπ+π/2,解得x=kπ/2+π/8
k∈z
即为对称轴方程
(2)f(x)在[0,π/8
] 上递增,在[π/8,π/6]上递减∴当x=π/8时,f(x)=2
f(x)=根号2+a+1=2,a=1-根号2
轴对称方程:2x+π/4=kπ+π/2,解得x=kπ/2+π/8
k∈z
即为对称轴方程
展开全部
解:f(x)=2cos²x+sin2x+a=cos2x+1+sin2x+a=(根号2)sin(2x+π/4)+a+1,sinx的最小证周期为2π,所以sin(2x+π/4)最小正周期为π。单调增区间:2kπ-π/2=<2x+π/4<=2kπ+π/2解得x策增区间为[kπ-π3/8,kπ+π1/8]。
(2)当x∈[0,π/6],2x+π/4∈[π/4,7π/12],当2x+π/4=π/2时值最大,f(x)=根号2+a+1=2,a=1-根号2
轴对称方程:2x+π/4=kπ+π/2,解得x=kπ/2+π/8即为对称轴方程
(2)当x∈[0,π/6],2x+π/4∈[π/4,7π/12],当2x+π/4=π/2时值最大,f(x)=根号2+a+1=2,a=1-根号2
轴对称方程:2x+π/4=kπ+π/2,解得x=kπ/2+π/8即为对称轴方程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
f(x)=(2cos²x-1)+1+sin2x+a=(cos2x+sin2x)+a+1=√2[(√2)/2sin2x+(√2)/2cos2x]+a+1=√2sin(2x+π/4)+a+1
==>最小正周期T=2π/2=π,
2kπ-π/2<=2x+π/4<=2kπ+π/2
==>单调递增区间x∈[kπ-3π/8,kπ+π/8]
(2)
由(1)得
∵x∈[0,π/6]
∴2x+π/4∈[π/4,7π/12],则当2x+π/4=π/2,即x=π/8时,f(x)最大值=1+1+a=2
==>a=0
对称轴:2x+π/4=kπ+π/2
==>x=kπ/2+π/8
f(x)=(2cos²x-1)+1+sin2x+a=(cos2x+sin2x)+a+1=√2[(√2)/2sin2x+(√2)/2cos2x]+a+1=√2sin(2x+π/4)+a+1
==>最小正周期T=2π/2=π,
2kπ-π/2<=2x+π/4<=2kπ+π/2
==>单调递增区间x∈[kπ-3π/8,kπ+π/8]
(2)
由(1)得
∵x∈[0,π/6]
∴2x+π/4∈[π/4,7π/12],则当2x+π/4=π/2,即x=π/8时,f(x)最大值=1+1+a=2
==>a=0
对称轴:2x+π/4=kπ+π/2
==>x=kπ/2+π/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询