如下图,在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM,且交∠CBE的平分线于N
2个回答
展开全部
证明:(1)取AD的中点H,连接HM.
在△DHM和△MBN中,
∵四边形ABCD是正方形,M为AB的中点,
∴BM=HD,
∵AM=AH,
∴△AMH为等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分线.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∴△DHM≌△MBN,
∴DM=MN;
(2)DM=MN仍成立.
在AD上取一点H,使DH=MB,连接HM.
∵四边形ABCD是正方形,BN平分∠CBE,DM⊥MN,
∴∠DHM=∠MBN=135°,
∠BMN+∠AMD=90°,∠HDM+∠AMD=90度,
∴∠BMN=∠HDM,
∴△DHM≌△MBN,
∴DM=MN.
若点M在AB的延长线上,
则在AD延长线上取点H,使DH=BM,连接HM.
同理可证:△DHM≌△MBN,
∴DM=MN.
在△DHM和△MBN中,
∵四边形ABCD是正方形,M为AB的中点,
∴BM=HD,
∵AM=AH,
∴△AMH为等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分线.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∴△DHM≌△MBN,
∴DM=MN;
(2)DM=MN仍成立.
在AD上取一点H,使DH=MB,连接HM.
∵四边形ABCD是正方形,BN平分∠CBE,DM⊥MN,
∴∠DHM=∠MBN=135°,
∠BMN+∠AMD=90°,∠HDM+∠AMD=90度,
∴∠BMN=∠HDM,
∴△DHM≌△MBN,
∴DM=MN.
若点M在AB的延长线上,
则在AD延长线上取点H,使DH=BM,连接HM.
同理可证:△DHM≌△MBN,
∴DM=MN.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询