如图三角形ABC中,CA=CB,角CAB=角CBA=45度,CD平分角ACB交AB于D,点E为BC的中点,CN垂
2个回答
展开全部
在AE上截取AF=CN,连接CF,由题设∠ACB=180°-45°×2=90°,CN⊥AE,
得∠CAF=90°-∠ACN=∠BCN,并CA=CB,AF=CN,
∴△CAF≌△BCN,得CF=BN,∠ACF=∠CBN=45°,那么∠ECF=90°-45°=45°=∠EBN;
∵EC=EB,CF=BN,∴△ECF≌△EBN,得FE=EN。
于是AE=AF+FE=CN+EN。
得∠CAF=90°-∠ACN=∠BCN,并CA=CB,AF=CN,
∴△CAF≌△BCN,得CF=BN,∠ACF=∠CBN=45°,那么∠ECF=90°-45°=45°=∠EBN;
∵EC=EB,CF=BN,∴△ECF≌△EBN,得FE=EN。
于是AE=AF+FE=CN+EN。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询