高考数学比较大小的技巧
3个回答
展开全部
一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。一着不慎,满盘皆输。)。二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。更多相关知识也可关注下北京新东方的高中数学课程。
展开全部
一、选择题十大速解方法
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法
直接法、特殊化法、数形结合法、等价转化法。
二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法
直接法、特殊化法、数形结合法、等价转化法。
二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高考数学大题题型总结及答题技巧
2018-02-11 09:45:26
文/叶丹
高考数学大题题型一般有5种,关于后面的大题,通常17题是三角函数,18题是立体几何,19题是导数,但也不排除变更的可能,前面三道题和后面两道大题比起来会简单很多。

如何学好高中数学
高中数学解题方法与技巧
怎样学好高中数学
高中数学怎么学成绩提高快
17题三角函数
17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础;
18题立体几何
18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比较大的影响,(虽然高考的目的是选拔人才,但是全省的平均分也不能太低。)
点击查看:高考数学大题有哪几种题型
提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。
19题导数
19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在求导的过程中就找到思路了;

最适合高考学生的书,淘宝搜索《高考蝶变》购买
20题圆锥曲线
20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。第二小题比较难,但是简单在有一定的套路,(做题做多了就知道的)套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中要结合题目的条件.一定要筛选和转换题目中所给出的条件,因为有的方式虽然可以得出结果但是过程很复杂,浪费的时间会比较多,别忘了后面还有一个大boss呢。
21题最难
21题那实在是太难了,至少在我看来,最后一小题几乎是写不出来的,就算完全写出来也需要很长的时间,那我们能做的就是在剩下为数不多的时间内尽力向老师要分数,就是能想到什么就写下来不要打草稿直接写。最后提一下:铃声响起来的那一刻,其实你的分数已经定了,无论考的好还是坏,都是既定的事实了,那就随它去吧,争取明天的英语才是最主要的。
注意:我有一个很好的做数学错题的方法在这里分享给大家,就是将数学错题分类。怎么分类呢?首先,将主要内容分类,就和课本上一样分类,就像第一章节是关于集合第二章节是关于函数。其次,将该章节学到的内容分类,譬如集合中有并集、交集等就将错题分为关于交集的错题关于并集的错题,如果是都有的话就写到混合的错题中。
最后,将解并集题目的方法中再进行分类,譬如分为1.利用画数轴方法解.2.利用××方法解......这样到时把所有的解题方法都掌握了,那么数学题还怕什么。依据以上几点,我觉得错题本最好是活页的,这样分类起来会比较方便而且可以随时增减题目。(不知道我讲清楚了没有,如果还有不懂的话可以来问我哦~)
虽然方法不是特别好,但是自我感觉还是有很多可取的地方的。无论方法多么完美,只有付出行动才会有进步。
2018-02-11 09:45:26
文/叶丹
高考数学大题题型一般有5种,关于后面的大题,通常17题是三角函数,18题是立体几何,19题是导数,但也不排除变更的可能,前面三道题和后面两道大题比起来会简单很多。

如何学好高中数学
高中数学解题方法与技巧
怎样学好高中数学
高中数学怎么学成绩提高快
17题三角函数
17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础;
18题立体几何
18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比较大的影响,(虽然高考的目的是选拔人才,但是全省的平均分也不能太低。)
点击查看:高考数学大题有哪几种题型
提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。
19题导数
19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在求导的过程中就找到思路了;

最适合高考学生的书,淘宝搜索《高考蝶变》购买
20题圆锥曲线
20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。第二小题比较难,但是简单在有一定的套路,(做题做多了就知道的)套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中要结合题目的条件.一定要筛选和转换题目中所给出的条件,因为有的方式虽然可以得出结果但是过程很复杂,浪费的时间会比较多,别忘了后面还有一个大boss呢。
21题最难
21题那实在是太难了,至少在我看来,最后一小题几乎是写不出来的,就算完全写出来也需要很长的时间,那我们能做的就是在剩下为数不多的时间内尽力向老师要分数,就是能想到什么就写下来不要打草稿直接写。最后提一下:铃声响起来的那一刻,其实你的分数已经定了,无论考的好还是坏,都是既定的事实了,那就随它去吧,争取明天的英语才是最主要的。
注意:我有一个很好的做数学错题的方法在这里分享给大家,就是将数学错题分类。怎么分类呢?首先,将主要内容分类,就和课本上一样分类,就像第一章节是关于集合第二章节是关于函数。其次,将该章节学到的内容分类,譬如集合中有并集、交集等就将错题分为关于交集的错题关于并集的错题,如果是都有的话就写到混合的错题中。
最后,将解并集题目的方法中再进行分类,譬如分为1.利用画数轴方法解.2.利用××方法解......这样到时把所有的解题方法都掌握了,那么数学题还怕什么。依据以上几点,我觉得错题本最好是活页的,这样分类起来会比较方便而且可以随时增减题目。(不知道我讲清楚了没有,如果还有不懂的话可以来问我哦~)
虽然方法不是特别好,但是自我感觉还是有很多可取的地方的。无论方法多么完美,只有付出行动才会有进步。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询