若f'(x)在(a,b)内有界,则f(x)在(a,b)内有界

设f(x)在(a,b)上可导,若f'(x)在(a,b)上有界,则f(x)在(a,b)上有界问命题是否正确?正确说明理由,错误举出反例... 设 f(x) 在 (a,b) 上可导,若 f'(x) 在 (a,b) 上有界,则 f(x) 在 (a,b) 上有界
问命题是否正确?正确说明理由,错误举出反例
展开
 我来答
茹翊神谕者

2021-09-17 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1536万
展开全部

正确,简单计算一下即可。

清璧兴晨菲
2019-05-20 · TA获得超过1080个赞
知道小有建树答主
回答量:362
采纳率:100%
帮助的人:6.7万
展开全部
正确
因为f(x) 在 (a,b) 上可导,所以f(x) 在 (a,b) 上连续,对任意x0∈(a,b),f(x0)存在
根据拉格朗日中值定理,f(x)=f(x0)+f'(θ)(x-x0),(其中θ位于x与x0之间)由 f'(x)有界,设|f'(x)|≤M,可推出f(x)≤f(x0)+M(x-x0),即f(x)有界
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式