f(x)为偶函数,在x=0处导数存在,证明x=0处导数为0
1个回答
展开全部
f'(0-)=lim(x→0-)(f(x)-f(0))/x
=lim(t→0+)(f(-t)-f(0))/(-t) (t=-x)
=-lim(t→0+)(f(t)-f(0))/t
=-f'(0+)
因为可导,所以f'(0-)=f'(0+),所以f'(0-)=f'(0+)=f'(0)=0
=lim(t→0+)(f(-t)-f(0))/(-t) (t=-x)
=-lim(t→0+)(f(t)-f(0))/t
=-f'(0+)
因为可导,所以f'(0-)=f'(0+),所以f'(0-)=f'(0+)=f'(0)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询