代数的题,这个怎么做,在线等,急
设a,x∈R,n∈N计算以下总和:1+acosx+a^2cos2x+⋯+a^ncosnxasinx-a...
设a,x∈R,n∈N 计算以下总和:
1+acosx+a^2 cos2x+⋯+a^n cosnx
asinx-a^2 sin2x+⋯+(-1)^(n-1) a^n sinnx
sin^2x+sin^22x+⋯+sin^2nx
cos^2x+cos^22x+⋯+cos^2nx 展开
1+acosx+a^2 cos2x+⋯+a^n cosnx
asinx-a^2 sin2x+⋯+(-1)^(n-1) a^n sinnx
sin^2x+sin^22x+⋯+sin^2nx
cos^2x+cos^22x+⋯+cos^2nx 展开
1个回答
展开全部
(1) 等比复数级数
1 + a(cosx+isinx) + a^2(cosx+isinx)^2 + ...... + a^n(cosx+isinx)^n
= [a^(n+1)(cosx+isinx)^(n+1) - 1]/[a(cosx+isinx)-1]
= {a^(n+1)[cos(n+1)x+isin(n+1)x] - 1}/[(acosx-1)+isinx]
= {a^(n+1)[cos(n+1)x+isin(n+1)x] - 1}[(acosx-1)-isinx]/[(acosx-1)^2+(sinx)^2]
取实部, 得
1+acosx+a^2cos2x+⋯+a^ncosnx
= {[a^(n+1)cos(n+1)x-1](acosx-1)+sin(n+1)xsinx}/[(acosx-1)^2+(sinx)^2]
(2) 等比复数级数
a(cosx+isinx) - a^2(cosx+isinx)^2 + ...... + (-1)^(n-1)a^n(cosx+isinx)^n
= a(cosx+isinx)[1-(-1)^n a^n(cosx+isinx)^n]/[1+a(cosx+isinx)]
= a(cosx+isinx)[1-(-1)^n a^n(cosnx+isinnx)]/[(1+acosx)+iasinx]
= a[(1+acosx)-iasinx](cosx+isinx)[1-(-1)^n a^n(cosnx+isinnx)]
/[(1+acosx)^2+(asinx)^2]
= a[(1+acosx)cosx+a(sinx)^2+i[sinx(1+acosx)-asinxcosx]
·[1-(-1)^n a^n(cosnx+isinnx)]/[(1+acosx)^2+(asinx)^2]
= a(1+a+isinx)·[1-(-1)^na^ncosnx - i(-1)^na^nsinnx)]/[(1+acosx)^2+(asinx)^2]
取虚部,得
asinx - a^2(sin2x) + ...... + (-1)^(n-1)a^n(sinnx)
= a{(-1)^(n+1)(1+a)a^nsinnx)+sinx[1-(-1)^na^ncosnx]}/[(1+acosx)^2+(asinx)^2]
(3) 由 (1), 取 a = 1, x = 2u,得
cos2u+cos4u+⋯+cos2nu
= -1+{[cos2(n+1)u-1](cos2u-1)+sin2(n+1)usin2u}/[(cos2u-1)^2+(sin2u)^2]
即 cos2x+cos4x+⋯+cos2nx
= -1+{[cos2(n+1)x-1](cos2x-1)+sin2(n+1)xsin2x}/[(cos2x-1)^2+(sin2x)^2]
则 sin^2x+sin^2(2x)+⋯+sin^2(nx)
= (1/2)[1-cos2x+1-cos4x + ...... + 1-cos2nx]
= (1/2)[n-(cos2x+cos4x + ...... + cos2nx)]
= (1/2)【n+1-{[cos2(n+1)x-1](cos2x-1)+sin2(n+1)xsin2x}/[(cos2x-1)^2+(sin2x)^2]】
(4) 由 (3), cos^2x+cos^2(2x)+⋯+cos^2(nx)
= 1-sin^2x+1-sin^2(2x)+⋯+1-sin^2(nx)
= n-[sin^2x+sin^2(2x)+⋯+sin^2(nx)]
= (1/2)【n-1+{[cos2(n+1)x-1](cos2x-1)+sin2(n+1)xsin2x}/[(cos2x-1)^2+(sin2x)^2]】
1 + a(cosx+isinx) + a^2(cosx+isinx)^2 + ...... + a^n(cosx+isinx)^n
= [a^(n+1)(cosx+isinx)^(n+1) - 1]/[a(cosx+isinx)-1]
= {a^(n+1)[cos(n+1)x+isin(n+1)x] - 1}/[(acosx-1)+isinx]
= {a^(n+1)[cos(n+1)x+isin(n+1)x] - 1}[(acosx-1)-isinx]/[(acosx-1)^2+(sinx)^2]
取实部, 得
1+acosx+a^2cos2x+⋯+a^ncosnx
= {[a^(n+1)cos(n+1)x-1](acosx-1)+sin(n+1)xsinx}/[(acosx-1)^2+(sinx)^2]
(2) 等比复数级数
a(cosx+isinx) - a^2(cosx+isinx)^2 + ...... + (-1)^(n-1)a^n(cosx+isinx)^n
= a(cosx+isinx)[1-(-1)^n a^n(cosx+isinx)^n]/[1+a(cosx+isinx)]
= a(cosx+isinx)[1-(-1)^n a^n(cosnx+isinnx)]/[(1+acosx)+iasinx]
= a[(1+acosx)-iasinx](cosx+isinx)[1-(-1)^n a^n(cosnx+isinnx)]
/[(1+acosx)^2+(asinx)^2]
= a[(1+acosx)cosx+a(sinx)^2+i[sinx(1+acosx)-asinxcosx]
·[1-(-1)^n a^n(cosnx+isinnx)]/[(1+acosx)^2+(asinx)^2]
= a(1+a+isinx)·[1-(-1)^na^ncosnx - i(-1)^na^nsinnx)]/[(1+acosx)^2+(asinx)^2]
取虚部,得
asinx - a^2(sin2x) + ...... + (-1)^(n-1)a^n(sinnx)
= a{(-1)^(n+1)(1+a)a^nsinnx)+sinx[1-(-1)^na^ncosnx]}/[(1+acosx)^2+(asinx)^2]
(3) 由 (1), 取 a = 1, x = 2u,得
cos2u+cos4u+⋯+cos2nu
= -1+{[cos2(n+1)u-1](cos2u-1)+sin2(n+1)usin2u}/[(cos2u-1)^2+(sin2u)^2]
即 cos2x+cos4x+⋯+cos2nx
= -1+{[cos2(n+1)x-1](cos2x-1)+sin2(n+1)xsin2x}/[(cos2x-1)^2+(sin2x)^2]
则 sin^2x+sin^2(2x)+⋯+sin^2(nx)
= (1/2)[1-cos2x+1-cos4x + ...... + 1-cos2nx]
= (1/2)[n-(cos2x+cos4x + ...... + cos2nx)]
= (1/2)【n+1-{[cos2(n+1)x-1](cos2x-1)+sin2(n+1)xsin2x}/[(cos2x-1)^2+(sin2x)^2]】
(4) 由 (3), cos^2x+cos^2(2x)+⋯+cos^2(nx)
= 1-sin^2x+1-sin^2(2x)+⋯+1-sin^2(nx)
= n-[sin^2x+sin^2(2x)+⋯+sin^2(nx)]
= (1/2)【n-1+{[cos2(n+1)x-1](cos2x-1)+sin2(n+1)xsin2x}/[(cos2x-1)^2+(sin2x)^2]】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询